

Figure 3. Areas of highest biological diversity in the continental United States. Source: The Nature Conservancy, Arlington, VA. (In color in *Annals* online.)

outside Appalachia translates to 10,923 excess deaths every year, with 2,347 excess deaths every year after, adjusting for other soci-oeconomic factors, including smoking rates, obesity, poverty, and access to health care. These socio-economic factors were statistically significantly worse in coal-mining areas. 18,62,68

Using the VSL of \$7.5 million,²⁰ the unadjusted mortality rate, and the estimate that 91% of coal during these years was used for electricity,² this translates to a total cost of \$74.6 billion, or 4.36¢/kWh. In contrast, the authors calculated the direct (monetary value of mining industry jobs, including employees and proprietors), indirect (suppliers and others connected to the coal industry), and induced (ripple or multiplier effects throughout the economies) economic benefits of coal mining to Appalachia, and estimated the benefits to be \$8.08 billion in 2005 US\$.

Ecological impacts

Appalachia is a biologically and geologically rich region, known for its variety and striking beauty. There is loss and degradation of habitat from MTR; impacts on plants and wildlife (species losses and species impacted) from land and water contamination, and acid rain deposition and altered stream conductivity; and the contributions of deforestation and soil disruption to climate change. ^{16,20}

Globally, the rich biodiversity of Appalachian headwater streams is second only to the tropics.⁶⁹ For example, the southern Appalachian mountains harbor the greatest diversity of salamanders globally, with 18% of the known species world-wide (Fig. 3).⁶⁹

Imperiled aquatic ecosystems

Existence of viable aquatic communities in valley fill permit sites was first elucidated in court testimony leading to the "Haden decision." An interagency study of 30 streams in MTR mining-permit areas focused on the upper, unmapped reaches of headwater streams in West Virginia and Kentucky. In performing this study, the researchers identified 71 genera of aquatic insects belonging to 41 families within eight insect orders. The most widely distributed taxa in 175 samples were found in abundance in 30 streams in five areas slated to undergo MTR.

Electrical conductivity (a measure of the concentration of ions) is used as one indicator of stream health. The EPA recommends that stream conductivity not exceed 500 microsiemens per cm (uS/cm). In areas with the most intense mining, in which 92% of the watershed had been mined, a recent study revealed levels of 1,100 uS/cm.

Meanwhile, even levels below 500 *uS*/cm were shown to significantly affect the abundance and composition of macroinvertebrates, such as mayflies and caddis flies.⁷³ "Sharp declines" were found in some stream invertebrates where only 1% of the watershed had been mined.^{74,75}

Semivoltine aquatic insects (e.g., many stoneflies and dragonflies)—those that require multiple years in the larval stage of development—were encountered in watersheds as small as 10–50 acres. While many of these streams become dry during the late summer months, they continue to harbor permanent resident taxonomic groups capable of withstanding summer dry conditions. Salamanders, the top predatory vertebrates in these fishless headwater streams, depend on permanent streams for their existence.

Mussels are a sensitive indicator species of stream health. Waste from surface mines in Virginia and Tennessee running off into the Clinch and Powell Rivers are overwhelming and killing these filter feeders, and the populations of mussels in these rivers has declined dramatically. Decreases in such filter feeders also affect the quality of drinking water downstream.⁷⁶

In addition, stream dwelling larval stages of aquatic insects are impossible to identify to the species level without trapping adults or rearing larvae to adults.⁷⁷ However, no studies of adult stages are conducted for mining-permit applications.

The view that—because there are so many small streams and brooks in the Appalachians—destroying a portion represents a minor threat to biodiversity is contrary to the science. As the planet's second-oldest mountain range, geologically recent processes in Appalachia in the Pleistocene epoch (from 2.5 million to 12,000 years ago) have created conditions for diversification, resulting in one of the U.S. biodiversity "hotspots" (Fig. 3).

Thus, burying an entire 2,000 hectare watershed, including the mainstream and tributaries, is likely to eliminate species of multiple taxa found only in Appalachia.

Researchers have concluded that many unknown species of aquatic insects have likely been buried under valley fills and affected by chemically contaminated waterways. Today's Appalachian coal mining is undeniably resulting in loss of aquatic species, many of which will never be known. Much more study is indicated to appreciate the full spectrum of the ecological effects of MTR mining.⁷⁸

Transport

There are direct hazards from transport of coal. People in mining communities report that road hazards and dust levels are intense. In many cases dust is so thick that it coats the skin, and the walls and furniture in homes. ⁴¹ This dust presents an additional burden in terms of respiratory and cardiovascular disease, some of which may have been captured by Hendryx and colleagues. ^{17–19,60,62,67,68,79}

With 70% of U.S. rail traffic devoted to transporting coal, there are strains on the railroad cars and lines, and (lost) opportunity costs, given the great need for public transport throughout the nation.²⁰

The NRC report²⁰ estimated the number of railroad fatalities by multiplying the proportion of revenue-ton miles (the movement of one ton of revenue-generating commodity over one mile) of commercial freight activity on domestic railroads accounted for by coal, by the number of public fatalities on freight railroads (in 2007); then multiplied by the proportion of transported coal used for electricity generation. The number of coal-related fatalities was multiplied by the VSL to estimate the total costs of fatal accidents in coal transportation. A total of 246 people were killed in rail accidents during coal transportation; 241 of these were members of the public and five of these were occupational fatalities. The deaths to the public add an additional cost of \$1.8 billion, or 0.09¢/kWh.

Social and employment impacts

In Appalachia, as levels of mining increase, so do poverty rates and unemployment rates, while educational attainment rates and household income levels decline.¹⁹

While coal production has been steadily increasing (from 1973 to 2006), the number of employees at the mines increased dramatically from 1973 to 1979, then decreased to levels below 1973 employment levels.²⁷ Between 1985 and 2005 employment in the Appalachian coal mining industry declined by 56% due to increases in mechanization for MTR and

other surface mining.^{19,27} There are 6,300 MTR and surface mining jobs in West Virginia, representing 0.7–0.8% of the state labor force.² Coal companies are also employing more people through temporary mining agencies and populations are shifting: between 1995 and 2000 coal-mining West Virginian counties experienced a net loss of 639 people to migration compared with a net migration gain of 422 people in nonmining counties.^{19,80}

Combustion

The next stage in the life cycle of coal is combustion to generate energy. Here we focus on coal-fired electricity-generating plants. The by-products of coal combustion include CO₂, methane, particulates and oxides of nitrogen, oxides of sulfur, mercury, and a wide range of carcinogenic chemicals and heavy metals.²⁰

Long-range air pollutants and air quality. Data from the U.S. EPA's Emissions & Generation Resource Integrated Database (eGRID)⁸¹ and National Emissions Inventory (NEI)⁸² demonstrates that coal power is responsible for much of the U.S. power generation-related emissions of PM_{2.5} (51%), NO_x (35%), and SO₂ (85%). Along with primary emissions of the particulates, SO₂ and NO_x contribute to increases in airborne particle concentrations through secondary transformation processes.^{20,21,83}

Studies in New England⁸⁴ find that, although populations within a 30-mile radius of coal-fired power plants make up a small contribution to aggregate respiratory illness, on a per capita basis, the impacts on those nearby populations are two to five times greater than those living at a distance. Data in Kentucky suggest similar zones of high impact.

The direct health impacts of SO₂ include respiratory illnesses—wheezing and exacerbation of asthma, shortness of breath, nasal congestion, and pulmonary inflammation—plus heart arrhythmias, LBW, and increased risk of infant death.

The nitrogen-containing emissions (from burning all fossil fuels and from agriculture) cause damages through several pathways. When combined with volatile organic compounds, they can form not only particulates but also ground-level ozone (photochemical smog). Ozone itself is corrosive to the lining of the lungs, and also acts as a local heattrapping gas.

Epidemiology of air pollution. Estimates of nonfatal health endpoints from coal-related pollutants vary, but are substantial—including 2,800 from lung cancer, 38,200 nonfatal heart attacks and tens of thousands of emergency room visits, hospitalizations, and lost work days. 85 A review 83 of the epidemiology of airborne particles documented that exposure to PM_{2.5} is linked with all-cause premature mortality, cardiovascular and cardiopulmonary mortality, as well as respiratory illnesses, hospitalizations, respiratory and lung function symptoms, and school absences. Those exposed to a higher concentration of PM_{2.5} were at higher risk.⁸⁶ Particulates are a cause of lung and heart disease, and premature death,83 and increase hospitalization costs. Diabetes mellitus enhances the health impacts of particulates⁸⁷ and has been implicated in sudden infant death syndrome.⁸⁸ Pollution from two older coal-fired power plants in the U.S. Northeast was linked to approximately 70 deaths, tens of thousands of asthma attacks, and hundreds of thousands of episodes of upper respiratory illnesses annually.89

A reanalysis of a large U.S. cohort study on the health effects of air pollution, the Harvard Six Cities Study, by Schwartz et al. 90 used year-to-year changes in PM_{2.5} concentrations instead of assigning each city a constant PM_{2.5} concentration. To construct one composite estimate for mortality risk from PM_{2.5}, the reanalysis also allowed for yearly lags in mortality effects from exposure to PM_{2.5}, and revealed that the relative risk of mortality increases by 1.1 per 10 μ g/m³ increase in PM_{2.5} the year of death, but just 1.025 per $10 \mu g/m^3$ increase in PM_{2.5} the year before death. This indicates that most of the increase in risk of mortality from PM_{2.5} exposure occurs in the same year as the exposure. The reanalysis also found little evidence for a threshold, meaning that there may be no "safe" levels of PM_{2.5} and that all levels of PM_{2.5} pose a risk to human health.91

Thus, prevention strategies should be focused on continuous reduction of PM_{2.5} rather than on peak days, and that air quality improvements will have effect almost immediately upon implementation. The U.S. EPA annual particulate concentration standard is set at 15.0 μ g/m³, arguing that there is no evidence for harm below this level. ⁹² The results of the Schwartz *et al.* ⁹⁰ study directly contradict this line of reasoning.

Risk assessment. The risk assessment performed by the NRC,²⁰ found aggregate damages of \$65 billion, including damages to public health, property, crops, forests, foregone recreation, and visibility due to emissions from coal-fired power plants of PM_{2.5}, PM₁₀, SO₂, NO_x, volatile organic compounds, and ozone. The public health damages included mortality cases, bronchitis cases, asthma cases, hospital admissions related to respiratory, cardiac, asthma, coronary obstructive pulmonary disease, and ischemic heart disease problems, and emergency room visits related to asthma. On a plant-by-plant basis after being normalized to electricity produced by each plant, this was 3.2 ¢/kWh. Plant-by-plant estimates of the damages ranged from 1.9 ¢/kWh to 12 ¢/kWh. Plant-to-plant variation was largely due to controls on the plant, characteristics of the coal, and the population downwind of the plant. Emissions of SO₂ were the most damaging of the pollutants affecting air quality, and 99% of this was due to SO₂ in the particle form.²⁰ The NRC study found that over 90% of the damages due to air quality are from PM_{2.5}-related mortality, which implies that these damages included approximately 8,158 excess mortality cases.²⁰ For the state of Kentucky alone, for each ton of SO₂ removed from the stack, the NRC (2009)²⁰ calculated a public health savings of \$5,800. Removing the close to 500,000 tons emitted in Kentucky would save over \$2.85 billion annually. The life cycle analysis found that damages from air quality public health impacts, monetized using methods from ExternE²⁶ are approximately \$70.5 billion, which is roughly in line with this number.

The NRC's estimate is likely an underestimate, since the NRC used the concentration-response curve from Pope and Dockery,83 which provides a low estimate for increases in mortality risk with increases in PM_{2.5} exposure and is an outlier when compared to other studies examining the PM_{2.5}mortality relationship.^{6,87} Had they used the result of the more recent study by Schwartz et al., 90 which was used in a similar study by Levy et al.,21 or the number from Dockery et al.,93 the value they calculated would have been approximately three times higher,²⁰ therefore implying 24,475 excess deaths in 2005, with a cost of \$187.5 billion, or 9.3¢/kWh. As the Schwartz et al. study is more recent, uses elaborate statistical techniques to derive the concentration-response function for PM_{2.5} and mortality, and is now widely accepted, 21,94 we use it here to derive our best and high estimate, and the Pope and Dockery, ⁸³ estimate to derive our low. Our best and high estimates for the damages due to air quality detriment impacts are both \$187.5 billion, and our low is \$65 billion. On a per-kWh basis, this is an average cost of 9.3 ¢/kWh with a low estimate of 3.2 ¢/kWh.

Atmospheric nitrogen deposition. In addition to the impacts to air quality and public health, nitrogen causes ecological harm via eutrophication. Eutrophication, caused by excess nitrogen inputs to coastal river zones, is the greatest source of water quality alteration in the United States and atmospheric deposition is one of the dominant sources of nitrogen inputs. 95 In an analysis by Jaworkski et al., 95 prepared for the EPA, 10 benchmark watersheds in the U.S. Northeast that flowed into the Atlantic coastal zone with good historical data were analyzed in conjunction with emissions data and reconstructed historical emissions. They found that the contribution to riverine nitrogen from nitrogen deposited from the air ranged from 36% to 80%, with a mean of 64%.

The other primary sources of nitrogen are fertilizers from point (e.g., river) discharges and nonpoint (e.g., agricultural land) sources, and other point sources including sewage from cities and farm animals, especially concentrated animal feeding operations. ⁹⁵ Anthropogenic contributions of nitrogen are equal to the natural sources, doubling this form of fertilization of soils and water bodies. ⁹⁶

Harmful algal blooms and dead zones

Ocean and water changes are not usually associated with coal. But nitrogen deposition is a by-product of combustion and the EPA⁹⁷ has reached consensus on the link between aquatic eutrophication and harmful algal blooms (HABs), and concluded that nutrient over-fertilization is one of the reasons for their expansion in the United States and other nations. HABs are characterized by discolored water, dead and dying fish, and respiratory irritants in the air, and have impacts including illness and death, beach closures, and fish, bird, and mammal die-offs from exposure to toxins. Illnesses in humans include gastroenteritis, neurological deficits, respiratory illness, and diarrheic, paralytic, and neurotoxic shellfish poisonings.

 N_2O from land clearing is a heat-trapping gas^{38,42} and adds to the nitrogen deposited in soils and water

bodies. The nitrogen is also a contributor to fresh and sea water acidification. 98–100 Other factors include the loss of wetlands that filter discharges. 98–100

The economic losses from HABs are estimated to be over \$82 million/year in the United States, based on the most prominent episodes. ^{101,102} The full economic costs of HABs include public health impacts and health care costs, business interruptions of seafood and other allied industries (such as tourism and recreation, unemployment of fin- and shellfish fisherman and their families), and disruptions of international trade. ^{98–100}

The overfertilization of coastal zones worldwide has also led to over 350 "dead zones" with hypoxia, anoxia, and death of living marine organisms. Commercial and recreational fisheries in the Gulf of Mexico generate \$2.8 billion annually 103 and losses from the heavily eutrophied Gulf of Mexico dead zone put the regional economy at risk.

Acid precipitation. In addition to the health impacts of SO₂, sulfates contribute to acid rain, decreased visibility, and have a greenhouse cooling influence.²⁰

The long-term Hubbard Brook Ecosystem Study¹⁰⁴ has demonstrated that acid rain (from sulfates and nitrates) has taken a toll on stream and lake life, and soils and forests in the United States, primarily in the Northeast. The leaching of calcium from soils is widespread and, unfortunately, the recovery time is much longer than the time it takes for calcium to become depleted under acidic conditions.¹⁰⁵

No monetized values of costs were found but a value for the benefits of improvements to the Adirondack State Park from acid rain legislation was produced by Resources for the Future, and found benefits ranging from \$336 million to \$1.1 billion per year. ¹⁰⁶

Mercury. Coal combustion in the U.S. releases approximately 48 tons of the neurotoxin mercury each year.⁵⁴ The most toxic form of mercury is methylmercury, and the primary route of human exposure is through consumption of fin- and shell-fish containing bioaccumulated methylmercury.¹⁰⁷ Methylmercury exposure, both dietary and *in utero* through maternal consumption, is associated with neurological effects in infants and children, including delayed achievement of developmental milestones and poor results on neurobehavioral

tests—attention, fine motor function, language, visual-spatial abilities, and memory. Seafood consumption has caused 7% of women of childbearing age to exceed the mercury reference dose set by the EPA, and 45 states have issued fish consumption advisories. Emission controls specific to mercury are not available, though 74–95% of emitted mercury is captured by existing emissions control equipment. More advanced technologies are being developed and tested. 107

Direct costs of mercury emissions from coal-fired power plants causing mental retardation and lost productivity in the form of IQ detriments were estimated by Trasande *et al.*^{22,23} to be \$361.2 million and \$1.625 billion, respectively, or 0.02¢/kWh and 0.1¢/kWh, respectively. Low-end estimates for these values are \$43.7 million and \$125 million, or 0.003¢/kWh and 0.007¢/kWh; high-end estimates for these values are \$3.3 billion and \$8.1 billion, or 0.19¢/kWh and 0.48¢/kWh.

There are also epidemiological studies suggesting an association between methylmercury exposure and cardiovascular disease. Rice *et al.*¹⁰⁹ monetized the benefits of a 10% reduction in mercury emissions for both neurological development and cardiovascular health, accounting for uncertainty that the relationship between cardiovascular disease and methylmercury exposure is indeed causal. Applying these results for the cardiovascular benefits of a reduction in methylmercury to the 41% of total U.S. mercury emissions from coal^{22,23} indicates costs of \$3.5 billion, with low and high estimates of \$0.2 billion and \$17.9 billion, or 0.2 ¢/kWh, with low and high estimates of 0.014 ¢/kWh and 1.05 ¢/kWh.

Coal's contributions to climate change

The Intergovernmental Panel on Climate Change (IPCC) reported that annual global GHG emissions have—between 1970 and 2004—increased 70% to 49.0 Gt CO₂-e/year. ¹⁰⁹ The International Energy Agency's Reference Scenario estimates that worldwide CO₂ emissions will increase by 57% between 2005 and 2030, or 1.8% each year, to 41,905 Mt. ¹ In the same time period, CO₂ emissions from coalgenerated power are projected to increase 76.6% to 13,884 Mt. ¹

In 2005, coal was responsible for 82% of the U.S.'s GHG emissions from power generation. ¹¹⁰ In addition to direct stack emissions, there are methane

emissions from coal mines, on the order of 3% of the stack emissions. 110 There are also additional GHG emissions from the other uses of coal, approximately 139 Mt ${\rm CO_2}$. 1

Particulate matter (black carbon or soot) is also a heat-trapping agent, absorbing solar radiation, and, even at great distances, decreasing reflectivity (albedo) by settling in snow and ice. 111–113 The contribution of particulates (from coal, diesel, and biomass burning) to climate change has, until recently, been underestimated. Though short-lived, the global warming potential per volume is 500 times that of CO₂. 111

Climate change

Since the 1950s, the world ocean has accumulated 22 times as much heat as has the atmosphere, ¹¹⁴ and the pattern of warming is unmistakably attributable to the increase in GHGs. ¹¹⁵ Via this ocean repository and melting ice, global warming is changing the climate: causing warming, altered weather patterns, and sea level rise. Climate may change gradually or nonlinearly (in quantum jumps). The release of methane from Arctic seas and the changes in Earth's ice cover (thus albedo), are two potential amplifying feedbacks that could accelerate the rate of Earth's warming.

Just as we have underestimated the rate at which the climate would change, we have underestimated the pace of health and environmental impacts. Already the increases in asthma, heat waves, clusters of illnesses after heavy rain events and intense storms, and in the distribution of infectious diseases are apparent. Moreover, the unfolding impacts of climate instability hold yet even more profound impacts for public health, as the changes threaten the natural life-supporting systems upon which we depend.

The EIA 2 estimated that 1.97 billion tons of CO $_2$ and 9.3 million tons CO $_2$ e of N $_2$ O were emitted directly from coal-fired power plants. Using the social cost of carbon, this resulted in a total cost of \$61.7 billion, or 3.06 ¢/kWh. Using the low and high estimates of the social cost of carbon results in cost of \$20.56 billion to \$205.6 billion, or 1.02 ¢/kWh to 10.2 ¢/kWh.

Black carbon emissions were also calculated using data from the EPA's eGRID database⁸¹ on electricity produced from lignite. The low, mean, and high energy density values for lignite⁵ was then used

to calculate the amount of lignite consumed. The Cooke *et al.*¹¹⁸ emissions factor was used to estimate black carbon emissions based on lignite use and the Hansen *et al.*¹¹¹ global temperature potential was used to convert these emissions to CO_2e . This resulted in an estimate of 1.5 million tons CO_2e being emitted in 2008, with a value of \$45.2 million, or 0.002 c/kWh. Using our low and high estimates for the social cost of carbon and the high and low values for the energy density of lignite produced values of \$12.3 million to \$161.4 million, or 0.0006 c/kWh to 0.008 c/kWh.

One measure of the costs of climate change is the rising costs of extreme weather events, though these are also a function of and real estate and insurance values. Overall, the costs of weather-related disasters rose 10-fold from the 1980s to the 1990s (from an average of \$4 bn/year to \$40 bn/year) and jumped again in the past decade, reaching \$225 bn in 2005. ¹¹⁹ Worldwide, Munich Re—a company that insures insurers—reports that, in 2008, without Katrina-level disasters, weather-related "catastrophic losses" to the global economy were the third-highest in recorded history, topping \$200 billion, including \$45 billion in the United States. ¹²⁰

The total costs of climate change damages from coal-derived power, including black carbon, CO₂ and N₂O emissions from combustion, land disturbance in MTR, and methane leakage from mines, is \$63.9 billion dollars, or 3.15 ¢/kWh, with low and high estimates of \$21.3 billion to \$215.9 billion, or 1.06 ¢/kWh to 10.71 ¢/kWh. A broad examination of the costs of climate change¹²¹ projects global economic losses to between 5 and 20% of global gross domestic product (\$1.75–\$7 trillion in 2005 US\$); the higher figure based on the potential collapse of ecosystems, such as coral reefs and widespread forest and crop losses. With coal contributing at least one-third of the heat-trapping chemicals, these projections offer a sobering perspective on the evolving costs of coal; costs that can be projected to rise (linearly or nonlinearly) over time.

Carbon capture and storage

Burning coal with CO₂ CCS in terrestrial, ocean, and deep ocean sediments are proposed methods of deriving "clean coal." But—in addition to the control technique not altering the upstream life cycle costs—significant obstacles lie in the way, including the costs of construction of suitable plants

		Subcri	tical PC	Supercr	ritical PC	Ultra-supe	Ultra-supercritical PC		IG	IGCC	
		No capture	Capture	No capture	Capture	No capture	Capture	Capture	No capture	Capture	
CCS perfor- mance	Coal feed (kg/hr)	208,000	284,000	184,894	242,950	164,000	209,000	232,628	185,376	228,115	
	CO ₂ emitted (kg/hr)	466,000	63,600	414,903	54,518	369,000	46,800	52,202	415,983	51,198	
	CO ₂ captured at 90%, (kg/h)	0	573.000	0	490662	0	422000	469817	0	460782	
	CO2 emitted (g/kWh)	931	127	830	109	738	94	104	832	102	
CCS costs	\$/kWh	1,280	2,230	1,330	2,140	1,360	2,090	1,900	1,430	1,890	
	Total \$, assuming 500	\$640,000,	\$1,115,000,	\$665,000,	\$1,070,000,	\$680,000,	\$1,045,000,	\$950,000,	\$715,000,	\$945,000,	
	MW plant	000	000	000	000	000	000	000	000	000	
	Inv. Charce ¢/kWh @ 15.1%	2.6	4.52	2.7	4.34	2.76	4.24	3.85	2.9	3.83	
	Fuel ¢/kWh @ \$1.50/MMBtu	1.49	2.04	1.33	1.75	1.18	1.5	1.67	1.33	1.64	
	O&M ¢/kWh	0.75	1.6	0.75	1.6	0.75	1.6	1.45	0.9	1.05	
	COE ¢/kWh	4.84	8.16	4.78	7.69	4.69	7.34	8.98	5.13	6.52	
	Cost of CO ₂ avoided vs. same technology w/o capture (\$/ton)		41.3		40.4		41.1	30.3		19.3	
	Cost of CO ₂ avoided vs. supercritical technology w/o capture (\$/ton)		48.2		40.4		34.8	30.3		24	
	Energy penalty		1,365,		1,313,		1,274,			1,230,	
	·		384,615		996,128		390,244			553,038	

Table 2. MIT cost estimates for some representative CCS systems.⁵

and underground storage facilities, and the "energy penalty" requiring that coal consumption per unit of energy produced by the power plant increase by 25–40% depending on the technologies used.^{4,42}

Retrofitting old plants—the largest source of CO₂ in the United States-may exact an even larger energy penalty. The energy penalty means that more coal is needed to produce the same quantity of electricity, necessitating more mining, processing, and transporting of coal and resulting in a larger waste stream to produce the same amount of electricity. Coal-fired plants would still require locally polluting diesel trucks to deliver the coal, and generate CCW ponds that can contaminate ground water. Given current siting patterns, such impacts often fall disproportionately on economically disadvantaged communities. The energy penalty combined with other increased costs of operating a CCS plant would nearly double the cost of generating electricity from that plant, depending on the technology used (see Table 2).5

The U.S. Department of Energy estimates that an underground volume of $30,000 \text{ km}^2$ will be needed per year to reduce the CO_2 emissions from coal by 20% by 2050 (the total land mass of the continental U.S. (48 states) is $9,158,960 \text{ km}^2$). 122

The safety and ensurability of scaling up the storage of the billion tons of CO_2 generated each year into the foreseeable future are unknown. Extrapolating from localized experiments, injecting fractions of the volumes that will have to be stored to make a significant difference in emissions, is fraught with numerous assumptions. Bringing CCS to scale raises additional risks, in terms of pressures underground. In addition to this, according to the U.S. Government Accountability Office (2008) there are regulatory, legal and liability uncertainties, and there is "significant cost of retrofitting existing plants that are single largest source of CO_2 emissions in the United States" (p. 7). 123

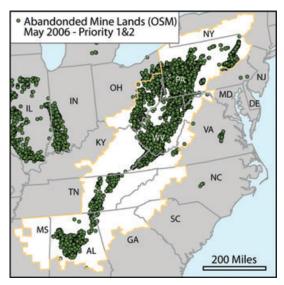
Health and environmental risks of CCS

The Special IPCC Report on Carbon Dioxide Capture and Storage⁴² lists the following concerns for CCS in underground terrestrial sites:

- 1. Storing compressed and liquefied CO₂ underground can acidify saline aquifers (akin to ocean acidification) and leach heavy metals, such as arsenic and lead, into ground water.⁴²
- 2. Acidification of ground water increases fluidrock interactions that enhance calcite dissolution and solubility, and can lead to fractures in

- limestone (CaCO₃) and subsequent releases of CO₂ in high concentrations. ¹²⁴
- 3. Increased pressures may cause leaks and releases from previously drilled (often unmapped) pathways.
- 4. Increased pressures could destabilize underground faults and lead to earthquakes.
- 5. Large leaks and releases of concentrated CO₂ are toxic to plants and animals.⁴²
 - a. The 2006 Mammoth Mountain, CA release left dead stands of trees. 124
- 6. Microbial communities may be altered, with release of other gases. 42

The figures in Table 2 represent costs for new construction. Costs for retrofits (where CCS is installed on an active plant) and rebuilds (where CCS is installed on an active plant and the combustion technology is upgraded) are highly uncertain because they are extremely dependent on site conditions and precisely what technology the coal plant is upgraded to.⁵ It does appear that complete rebuilds are more economically attractive than retrofits, and that "carbon-capture ready" plants are not economically desirable to build.⁵


Subsidies

In Kentucky, coal brings in an estimated \$528 million in state revenues, but is responsible for \$643 million in state expenditures. The net impact, therefore, is a loss of \$115 million to the state of Kentucky. 126 These figures do not include costs of health care, lost productivity, water treatment for siltation and water infrastructure, limited development potential due to poor air quality, and social expenditures associated with declines in employment and related economic hardships of coal-field communities. 126

The U.S. Federal Government provides subsides for electricity and mining activities, and these have been tallied by both the EIA and the Environmental Law Institute. The EIA estimate is \$3.17 billion of subsidies in 2007, or 0.16¢/kWh, and the Environmental Law Institute estimate is \$5.37 billion for 2007, or 0.27¢/kWh.

Abandoned mine lands

Abandoned mine lands (AML) are those lands and waters negatively impacted by surface coal mining and left inadequately reclaimed or abandoned prior to August 3, 1977.¹²⁹ There are over 1,700 old aban-

Figure 4. Current high-priority abandoned mine land reclamation sites from Alabama to Pennsylvania.¹²⁹ (In color in *Annals* online.) Source: Hope Childers, Wheeling Jesuit University.

doned mines in Pennsylvania, alone. ¹⁴ In some—like that in Centralia, PA—fires burn for decades, emitting carbon monoxide, and other fumes. The ground above others can open, and several people die each year falling into them. Still others flood and lead to contaminated ground water. Previous coal mining communities lie in the shadow of these disturbed areas. Officials in Pennsylvania estimate that it will take \$15 billion over six decades to clean Pennsylvania's abandoned mines.

Since the passage of the Surface Mining Control and Reclamation Act of 1977, active mining operations have been required to pay fees into the Abandoned Mine Reclamation Fund that are then used to finance reclamation of these AMLs. ¹²⁹ Despite the more than \$7.4 billion that has been collected as of September 30, 2005, there is a growing backlog of unfunded projects. ⁵¹ Data on the number and monetary value of unfunded AML projects remaining at the end of 2007 for the nation were collected directly from the Abandoned Mine Land Inventory System¹²⁹ and amounted to \$8.8 billion 2008 US\$, or 0.44¢/kWh (Fig. 4).

Results

The tabulation of the externalities in total and converted to 2008 US\$ is given in Table 3 and normalized to cents per kWh of coal-generated electricity

Table 3. The complete costs of coal as reviewed in this report in 2008 US\$.

				•	e assessment results 08 US\$)
	Monet	ized estimates from litera	ture (2008 US\$)	IPCC 2007, U.S.	U.S. Hard Coal
	Low	Best	High	Hard Coal	Eco-indicator
Land disturbance	\$54,311,510	\$162,934,529	\$3,349,209,766		
Methane emissions from mines	\$684,084,928	\$2,052,254,783	\$6,840,849,276	\$2,188,192, 405	
Carcinogens (mostly to water from waste)					\$11,775,544, 263
Public health burden of communities in Appalachia	\$74,612,823,575	\$74,612,823,575	\$74,612,823,575		
Fatalities in the public due to coal transport	\$1,807,500,000	\$1,807,500,000	\$1,807,500,000		
Emissions of air pollutants from combustion	\$65,094,911,734	\$187,473,345,794	\$187,473,345,794		\$71,011,655, 364
Lost productivity from mercury emissions	\$125,000,000	\$1,625,000,000	\$8,125,000,000		
Excess mental retardation cases from mercury emissions	\$43,750,000	\$361,250,000	\$3,250,000,000		
Excess cardiovascular disease from mercury emissions	\$246,000,000	\$3,536,250,000	\$17,937,500,000		
Climate damages from combustion emissions of CO ₂ and N ₂ O	\$20,559,709,242	\$61,679,127,726	\$205,597,092,419.52	\$70,442,466, 509	
Climate damages from combustion emissions of black carbon	\$12,346,127	\$45,186,823	\$161,381,512.28	\$3,739,876, 478	
Environmental Law Institute estimate 2007			\$5,373, 963,368		
EIA 2007	\$3,177,964,157	\$3,177, 964,157			
AMLs	\$8,775,282,692	\$8,775, 282,692	\$8,775, 282,692		
Climate total	\$21,310,451,806	\$63,939,503,861	\$215,948,532,974		
Total	\$175,193,683,964	\$345,308,920,080	\$523,303,948,403		

A 2010 Clean Air Task Force⁵⁶ (CATF) report, with Abt Associates consulting, lists 13,000 premature deaths due to air pollution from all electricity generation in 2010, a decrease in their estimates from previous years. They attribute the drop to 105 scrubbers installed since 2005, the year in which we based our calculations. We were pleased to see improvements reported in air quality and health outcomes. There is, however, considerable uncertainty regarding the actual numbers. Using the epidemiology from the "Six Cities Study" implies up to 34,000 premature deaths in 2010. Thus, our figures are mid-range while those of the CATF represent the most conservative of estimates.

in Table 4. Our best estimate for the externalities related to coal is \$345.3 billion (range: \$175.2 bn to \$523.3 bn). On a per-kWh basis this is 17.84¢/kWh, ranging from 9.42 ¢/kWh to 26.89 ¢/kWh.

Limitations of this analysis

While we have based this analysis on the best available data that are used by a wide range of organizations, this review is limited by the omission of

many environmental, community, mental health, and economic impacts that are not easily quantifiable. Another limitation is the placing of numbers on impacts that are difficult to quantify or monetize, including the VSL, a crude estimate of the benefits of reducing the number of deaths used by economists, and the social cost of carbon, based on the evolving impacts of climate change. We have included ranges, reflecting the numerous sets of data and studies in this field (all of which have their own

Table 4. Total costs of coal normalized to kWh of electricity produced.

	Monetized estimates from literature in ¢/kWh of			Monetized life cycle assessment results in ¢/kWh of electricity (2008 US\$)	
	Low	Best	High	IPCC 2007, U.S. Hard Coal	U.S. Hard Coal Eco-indicator
Land disturbance	0.00	0.01	0.17		
Methane emissions from mines	0.03	0.08	0.34	0.11	
Carcinogens (mostly to water from waste)					0.60
Public health burden of communities in Appalachia	4.36	4.36	4.36		
Fatalities in the public due to coal transport	0.09	0.09	0.09		
Emissions of air pollutants from combustion	3.23	9.31	9.31		3.59
Lost productivity from mercury emissions	0.01	0.10	0.48		
Excess mental retardation cases from mercury emissions	0.00	0.02	0.19		
Excess cardiovascular disease from mercury emissions	0.01	0.21	1.05		
Climate damage from combustion emissions of CO ₂ and N ₂ O	1.02	3.06	10.20	3.56	
Climate damages from combustion emissions of black carbon	0.00	0.00	0.01	0.19	
Environmental Law			0.27		
Institute estimate 2007					
EIA 2007	0.16	0.16			
AMLs	0.44	0.44	0.44		
Climate total	1.06	3.15	10.7	3.75	1.54
Total	9.36	17.84	26.89		

uncertainties), varying assumptions in data sets and studies, and uncertainties about future impacts and the costs to society.

Some of the issues raised apply only to the region discussed. Decreased tourism in Appalachia, for example, affects regional economies; but may not affect the overall economy of the United States, as tourists may choose other destinations.

Studies in Australian coal mining communities illustrate the cycle of economic boom during construction and operation, the economic and worker decoupling from the fortunes of the mines; then the eventual closing.¹³⁰ Such communities experience high levels of depression and poverty, and increases in assaults (particularly sexual assaults), motor vehicle accidents, and crimes against

property, until the culture shifts to allow for development of secondary industries. Additional evidence documents that mining-dependent economies tend to be weak economies, ¹³¹ and weak economic conditions in turn are powerful predictors of social and health disadvantages. ^{130,132}

Some values are also difficult to interpret, given the multiple baselines against which they must be compared. In assessing the "marginal" costs of environmental damages, we have assumed the diverse, pristine, hardwood forest that still constitutes the majority of the beautiful rich and rolling hills that make up the Appalachian Mountain range.

Ecological and health economic analyses are also affected by the discount rate used in such evaluations. Discount rates are of great value in assessing the worth of commodities that deteriorate over time. But they are of questionable value in assessing ecological, life-supporting systems that have value if they are sustained. Ecological economists might consider employing a negative discount rate—or an accrual rate—in assessing the true impacts of environmental degradation and the value of sustainability.

Finally, the costs reported here do not include a wide range of opportunity costs, including lost opportunities to construct wind farms and solar power plants, begin manufacture of wind turbines and solar technologies, develop technologies for the smart grid and transmission, and for economic and business development unrelated to the energy sector.

Conclusions

The electricity derived from coal is an integral part of our daily lives. However, coal carries a heavy burden. The yearly and cumulative costs stemming from the aerosolized, solid, and water pollutants associated with the mining, processing, transport, and combustion of coal affect individuals, families, communities, ecological integrity, and the global climate. The economic implications go far beyond the prices we pay for electricity.

Our comprehensive review finds that the best estimate for the total economically quantifiable costs, based on a conservative weighting of many of the study findings, amount to some \$345.3 billion, adding close to 17.8¢/kWh of electricity generated from coal. The low estimate is \$175 billion, or over 9¢/kWh, while the true monetizable costs could be as much as the upper bounds of \$523.3 billion,

adding close to 26.89¢/kWh. These and the more difficult to quantify externalities are borne by the general public.

Still these figures do not represent the full societal and environmental burden of coal. In quantifying the damages, we have omitted the impacts of toxic chemicals and heavy metals on ecological systems and diverse plants and animals; some ill-health endpoints (morbidity) aside from mortality related to air pollutants released through coal combustion that are still not captured; the direct risks and hazards posed by sludge, slurry, and CCW impoundments; the full contributions of nitrogen deposition to eutrophication of fresh and coastal sea water; the prolonged impacts of acid rain and acid mine drainage; many of the long-term impacts on the physical and mental health of those living in coal-field regions and nearby MTR sites; some of the health impacts and climate forcing due to increased tropospheric ozone formation; and the full assessment of impacts due to an increasingly unstable climate.

The true ecological and health costs of coal are thus far greater than the numbers suggest. Accounting for the many external costs over the life cycle for coal-derived electricity conservatively doubles to triples the price of coal per kWh of electricity generated.

Our analysis also suggests that the proposed measure to address one of the emissions—CO₂, via CCS—is costly and carries numerous health and environmental risks, which would be multiplied if CCS were deployed on a wide scale. The combination of new technologies and the "energy penalty" will, conservatively, almost double the costs to operate the utility plants. In addition, questions about the reserves of economically recoverable coal in the United States carry implications for future investments into coal-related infrastructure.

Public policies, including the Clean Air Act and New Source Performance Review, are in place to help control these externalities; however, the actual impacts and damages remain substantial. These costs must be accounted for in formulating public policies and for guiding private sector practices, including project financing and insurance underwriting of coal-fired plants with and without CCS.

Recommendations

1. Comprehensive comparative analyses of life cycle costs of all electricity generation

- technologies and practices are needed to guide the development of future energy policies.
- 2. Begin phasing out coal and phasing in cleanly powered smart grids, using place-appropriate alternative energy sources.
- A healthy energy future can include electric vehicles, plugged into cleanly powered smart grids; and healthy cities initiatives, including green buildings, roof-top gardens, public transport, and smart growth.
- 4. Alternative industrial and farming policies are needed for coal-field regions, to support the manufacture and installation of solar, wind, small-scale hydro, and smart grid technologies. Rural electric co-ops can help in meeting consumer demands.
- 5. We must end MTR mining, reclaim all MTR sites and abandoned mine lands, and ensure that local water sources are safe for consumption
- 6. Funds are needed for clean enterprises, reclamation, and water treatment.
- 7. Fund-generating methods include:
 - a. maintaining revenues from the workers' compensation coal tax;
 - b. increasing coal severance tax rates;
 - c. increasing fees on coal haul trucks and trains;
 - d. reforming the structure of credits and taxes to remove misaligned incentives;
 - e. reforming federal and state subsidies to incentivize clean technology infrastructure.
- 8. To transform our energy infrastructure, we must realign federal and state rules, regulations, and rewards to stimulate manufacturing of and markets for clean and efficient energy systems. Such a transformation would be beneficial for our health, for the environment, for sustained economic health, and would contribute to stabilizing the global climate.

Acknowledgments

The authors would like to acknowledge Amy Larkin of Greenpeace, who commissioned Kevin Eckerle, then an independent consultant, to perform work similar to this that is currently unpublished, and subsequently gave permission to make use of their work for this report. We would also like to thank James Hansen, Mark Jacobson, Jonathan Levy, John Evans, and Joel Schwartz for their helpful comments

throughout the course of this work. The genesis for this paper was a Conference—"The True Costs of Coal: Building a Healthy Energy Future"—held October 15–16, 2009 in Washington, DC, supported by the Energy Foundation and the Rockefeller Family Fund.

Conflicts of interest

The authors declare no conflicts of interest.

References

- International Energy Agency. 2007. World Energy Outlook 2007: China and India Insights. International Energy Agency. Paris, France.
- Energy Information Administration. 2010. U.S. Energy Information Administration. www.eia.doe.gov (accessed December 9, 2010).
- Energy Information Administration. 2009. Annual Energy Outlook 2009, with Projections to 2030. 227 pp. U.S. Department of Energy. Washington, DC.
- 4. House, K.Z., C.F. Harvey, M.J. Aziz & D.P. Schrag. 2009. The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base. *Energy & Environmental Science* 2: 193.
- Katzer, J., E.J. Moniz, J. Deutch, et al. 2007. The future of coal: an interdisciplinary MIT study. Technical report, Massachusetts Institute of Technology, Cambridge, MA
- Energy Information Administration. 2010. Energy Information's Outlook Through 2035. From the Annual Energy Outlook 2010, Diane Kearney, Energy Information Administration, U.S. Department of Energy, Surface Transportation Board, March 23, 2010, Washington, DC.
- Energy Information Administration. 2008. Annual Coal Report. http://www.eia.doe.gov/cneaf/coal/page/acr/ acr_sum.html (accessed December 9, 2010).
- Glustrom, L. 2009. Coal: Cheap and Abundant... Or Is It? http://www.cleanenergyaction.org/sites/default/files/Coal_ Supply_Constraints_CEA_021209.pdf (accessed December 9, 2010).
- Heinberg, R. 2009. Blackout: Coal, Climate and the Last Energy Crisis. Clairview Books. East Sussex, UK. 208pp.
- Luppens, J. A. et al. 2008. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming: U.S. Geological Survey Open-File Report 2008–1202.
- 11. Ruppert, L.F, M.A. Kirschbaum, P.D. Warwick, *et al.* 2002. The US Geological Survey's national coal resource assessment: the results. *Internat. J. Coal Geo.* **50:** 247–274.
- 12. Patzek, T.W. & G.D. Croft. 2010. A global coal production forecast with multi-Hubbert cycle analysis. *Energy* **35**: 3109–3122.
- 13. Krauss, C. 2008. An export in solid supply. New York Times.
- 14. Goodell, J. 2006. Big Coal: The Dirty Secret Behind America's Energy Future. Houghton Mifflin. NY.

- Ghose, M. 2007. Generation and quantification of hazardous dusts from coal mining in the Indian context. Environ. Monit. Assess. 130: 35–45.
- Palmer, M.A., E.S. Bernhardt, W.H. Schelsinger, et al. 2010. Science and regulation. Mountaintop mining consequences. Science 327: 148–149.
- Hendryx, M. 2009. Mortality from heart, respiratory, and kidney disease in coal mining areas of Appalachia. *Int.* Arch. Occup. Environ. Health 82: 243–249.
- Hendryx, M. & M. Ahern. 2008. Relations between health indicators and residential proximity to coal mining in West Virginia. Am. J. of Public Health 98: 669–671.
- Hendryx, M. & M. Ahern. 2009. Mortality in Appalachian coal mining regions: the value of statistical life lost. *Public Health Rep.* 124: 541–550.
- National Research Council. 2009. The Hidden Costs of Energy: Unpriced Consequences of Energy Production. Washington, DC.
- Levy, J., L. Baxter & J. Schwartz. 2009. Uncertainty and variability in health-related damages from coal-fired power plants in the United States. *Risk Analysis* 29: 1000– 1014
- Trasande, L., P. Landrigan & C. Schechter. 2005. Public health and economic consequences of methyl mercury toxicity to the developing brain. *Environ. Health Perspect.* 113: 590–596.
- Trasande, L., C. Schechter, K. Haynes & P. Landrigan. 2006.
 Mental retardation and prenatal methylmercury toxicity.
 Am. J. Ind. Med. 49: 153–158.
- Epstein, P.R & J. Selber. 2002. Oil: A Life Cycle Analysis of its Health and Environmental Impacts. The Center for Health and the Global Environment. Harvard Medical School. Boston, MA.
- 25. Pré Consultants. 2008. SimaPro 7.1. http://www.pre.nl/ (accessed December 9, 2010).
- Bickel, P. & R. Friedrich. Eds. 2004. ExternE: Externalities of Energy. Methodology 2005 Update. European Commission. Luxembourg.
- Mine Safety and Health Administration. 2008. http://www.msha.gov/ (accessed December 9, 2010).
- Yardley, J. 2008. As most of China celebrates New Years, a scramble continues in coal country. New York Times, February 9.
- 29. Jacobs, A. 2010. Rescuers in China struggle to free 153 trapped miners. *New York Times*, March 29.
- National Institute for Occupational Safety and Health. 2008. What's New in the CWHSP. NIOSH Coal Worker's Health Surveillance Program. http://www.cdc. gov/niosh/topics/surveillance/ords/pdfs/CWHSP-News-Fall2008.pdf (accessed December 9, 2010).
- Lloyd, J. W. 1971. Long-term mortality study of steelworkers V. Respiratory Cancer in coke plant workers. *J. Occ. Med.* 12: 151–157.
- Zeller, T.A. 2010. A battle in mining country pits coal against wind. New York Times, August 14.
- U.S. Environmental Protection Agency. 2010. EPA Makes Announcement on Two Proposed West Virginia Mountaintop Coal Mines. News Release. http:// yosemite.epa.gov/opa/admpress.nsf/bd4379a92

- ceceeac8525735900400c27/84636183a97ced24852576a200 69961a!OpenDocument (accessed December 9, 2010).
- 34. Kentucky Division of Water. 2008. Integrated Report to Congress on Water Quality in Kentucky. http://www.water.ky.gov/sw/swmonitor/305b/ (accessed December 9, 2010).
- Office of Surface Mining. 2008. Final Environmental Impact Statement: Excess Spoil Minimization, Stream Buffer Zones. Washington, DC. http://www.osmre.gov/aml/AML.shtm (accessed December 17, 2010).
- U.S. Environmental Protection Agency. 2002. Affected Environment and Consequences of Mountain-top Removal and Valley Fill Practices. Environmental Impact Statement. Washington, DC http://www.epa.gov/region3/ mtntop/pdf/III_affected-envt-consequences.pdf (accessed December 17, 2010).
- Epstein, P.R., W. Moomaw & C. Walker. 2008. Healthy solutions for the low carbon economy: guidelines for investors, insurers, and policy makers. The Center for Health and the Global Environment. Harvard Medical School. Boston, MA.
- Fox, J.F. & J.E. Campbell. 2010. Terrestrial carbon disturbance from mountaintop mining increases lifecycle emissions for clean coal. *Environ. Sci. Technol.* 44: 2144– 2149.
- Groisman, P.Y., R.W. Knight, T.R. Karl, et al. 2004. Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations.
 Journal of Hydrometeorology 5: 64–85.
- Groisman, P.Y. & R.W. Knight. 2008. Prolonged dry episodes over the conterminous United States: new tendencies emerging during the last 40 years. BAMS 21: 1850– 1862.
- 41. Reinhart, N. 2010. Personal communication.
- 42. Intergovernmental Panel on Climate Change, United Nations Environment Programme. Technology and Economics Assessment Panel. 2005. IPCC special report on carbon dioxide capture and storage: summary for policymakers. 25 pp. Geneva, Switzerland. http://www.ipcc.ch/pdf/special-reports/srccs/srccs/wholereport.pdf (accessed December 17, 2010).
- 43. Forster, P., V. Ramaswamy, P. Artaxo, et al. 2007. Changes in Atmospheric Constituents and in Radiative Forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 1–106.
- 44. West Virginia Department of Environmental Protection. 2010. http://www.dep.wv.gov/Pages/default.aspx (accessed December 9, 2010).
- U.S. Environmental Protection Agency. 2010.
 EPA Facilities Registry. http://www.epa.gov/enviro/ html/fii/fii_query_java.html (accessed December 9, 2010).
- Dewan, S. 2009. Hundreds of coal ash dumps lack regulation. New York Times, January 6.
- 47. Environmental Integrity Project. 2009. Coming Clean: What the EPA Knows About the Dangers of Coal Ash. A Summary of the United States Environmental Protection Agency's 2007 Human and Ecological Risk

- Assessment of Coal Combustion Wastes. http://www.environmentalintegrity.org/news_reports/news_09_05_07. php (accessed December 9, 2010).
- 48. Stout, B.M. & M.E. Cassidy. 2009. Personal communica-
- Wheeling Jesuit University. 2006. Kentucky Coal Impoundment Location and Information System. http://www.coalimpoundment.org/locate/list.asp (accessed December 9, 2010).
- Spath, P., M. Mann & D. Kerr. 1999. Life cycle assessment of coal-fired power production. Dept. of Energy, Oak Ridge, TN. http://www.nrel.gov/docs/fy99osti/25119.pdf (accessed December 9, 2010).
- Stout, B.M. & M.E. Cassidy. 2006. Environmental and social-economic impacts of electrical generation from the fossil fuel cycle in the Mid-Atlantic Highlands (unpublished). 1–25.
- 52. U.S. Department of Energy, U.S. Department of Health and Human Services, U.S. Environmental Protection Agency. 1980. Health effects of coal technologies: research needs. Washington, DC. http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=TRD&recid=20 070430115163CE&q=Health+effects+of+coal+technologies%3A+research+needs.&uid=790182396&setcookie=yes (accessed December 17, 2010).
- U.S. Department of Energy. 1986. Effects of Coal Rank and the Chemical Composition and Toxicological Activity of Coal Liquefaction Materials. Washington, DC.
- U.S. Environmental Protection Agency. 2009. Clean Air Mercury Rule. http://www.epa.gov/mercuryrule/ basic.htm (accessed December 9, 2010).
- Kentucky Department of Fish and Wildlife Resources. 2009. Fish Consumption Advisories. http://www.fw.ky.gov/fishadvisory.asp (accessed December 9, 2010).
- Clean Air Task Force. Power Plant Pollution Locator. 2010. http://www.catf.us/projects/power_sector/ power_plant_emissions/pollution_locator/ (accessed December 9, 2010).
- U.S. Environmental Protection Agency Clean Air Markets Division. 2004. Memorandum: Economic and energy analysis of the proposed interstate air quality rulemaking. http://www.epa.gov/cair/pdfs/tm0009.pdf (accessed December 17, 2010).
- 58. Keating, M., L. Evans, B. Dunham & J. Stant. 2009. Waste Deep: Filling Mines with Coal Ash is Profit for Industry, But Poison for People. http://www.earthjustice. org/news/press/2009/new-report-documents-unseenthreat-from-toxic-coal-ash (accessed December 9, 2010).
- Koornneef, J., T. Van Keulen, A. Faaij & W. Turkenburg. 2008. Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2. Int. J.Greenhouse Gas Control 2: 448–467
- Hendryx, M., K. O'Donnell & K. Horn. 2008. Lung cancer mortality is elevated in coal-mining areas of Appalachia. *Lung Cancer* 62: 1–7.
- Shiber, J. 2005. Arsenic in domestic well water and health in central Appalachia, USA. Water, Air, Soil Pollut. 160: 327–341.

- Hendryx, M. 2008. Mortality rates in Appalachian coal mining counties: 24 years behind the nation. *Environ. Justice* 1: 5–11.
- 63. Ahern, M., M. Mullett, K. MacKay & C. Hamilton. 2010. Residence in coal-mining areas and low-birth-weight-outcomes. *Maternal Child Health J.* Epub ahead of print. doi: 10.1007/s10995-009-0555-1/ http://www.ncbi.nlm.nih.gov/pubmed/20091110 (accessed December 9, 2010).
- 64. Ahern, M., K. MacKay, D. Carpenter & M. Hendryx. Low birth weight and pre-term birth outcomes in coal mining areas of the United States. *J. Environ. Health* DOI: 10.1007/s10995-009-0555-1/ http://www.ncbi.nlm. nih.gov/pubmed/20091110 (accessed December 17, 2010).
- Tyson, J.E. & S. Saigal. 2005. Outcomes for extremely lowbirth-weight infants: disappointing news. *JAMA* 294: 371– 373
- Curhan, G. C. et al. 1996. Birth weight and adult hypertension, diabetes mellitus, and obesity in U.S. men. Circulation 94: 3426–3250.
- 67. Hendryx, M. & M. Ahern. 2010. Appalachian Coal Mining & Human Health. Spring 2010 Symposium, Mountaintop Coal Mining: Human Health and Ecological Concerns. Presentation available upon request.
- 68. Hendryx, M. 2010. Personal communication.
- Morse, J.C., B.P. Stark & W.P. McCafferty. 1993. Southern Appalachian streams at risk: implications for mayflies, stoneflies, caddisflies, and other aquatic biota. *Aqua. Conserv.: Marine Freshwater Ecosys.* 3: 293–303.
- Bragg, E.A. 1999. Civil Action No. 2:98–0636. United States District Court Southern District of West Virginia Civil Action No. 2:98–0636. United States District Court Southern District of West Virginia. http://www.publicjustice.net/Repository/Files/Bragg%20district%20court%20PI%20decision.pdf (accessed December 9, 2010).
- Stout, B. & B. Wallace. 2005. A Survey of Eight Major Aquatic Insect Orders Associated with Small Headwater Streams Subject to Valley Fills from Mountaintop Mining. 1–13. http://www.epa.gov/region3/mtntop/pdf/appendices/d/StoutWallaceMacroinvertebrate.pdf (accessed December 17, 2010).
- Gilbert, N. 2010. Mountain mining damages streams. Nature 466: 806.
- 73. Kirk, E.J., R.A. Johnston & R. Maggard. 2010. An evaluation of the mayfly abundances and WV-SCI scores compared to levels of conductivity in several streams in southern West Virginia. 2010 West Virginia Surface Mine Drainage Task Force Symposium Papers, Morgantown, WV, March 30-31. Conference: http://wwmdtaskforce.com/proceedings/2010.cfm. Paper: http://wwmdtaskforce.com/proceedings/10/Kirk-REIC-Argus-Mayfly-Conductivity-Paper.doc (accessed December 17, 2010).
- Pond, G.J. 2010. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). *Hydrobiologica* http://www.springerlink.com/ content/b1w1153363782687/ (accessed December 17, 2010).

- Pond, G.J., M. E. Passmore, F.A. Borsuk, et al. 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertabrate bioassessment tools. J. N. Am. Benthol. Soc. 27: 717–737.
- Anon. 2007. Conservation: mines vs. mussels. Nat. Geo. Magazine 212.
- Merritt, R.W. & K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company. Dubuque, IA.
- Palmer, M.A., E.S. Bernhardt, E.A. Chornesky, et al. 2005. Ecological science and sustainability for the 21st century. Frontiers Ecol. Environ. 3: 4–11.
- Hendryx, M. & K.J. Zullig. 2009. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions. *Preven. Med.* 49: 355–359.
- 80. U.S. Census Bureau. 2000. Net migration for the population 5 years and over for the United States, regions, states, counties, New England minor civil divisions, metropolitan areas, and Puerto Rico. Washington, DC.
- 81. U.S. Environmental Protection Agency. 2009. Emissions & Generation Resource Integrated Database. http://www.epa.gov/cleanenergy/energy-resources/egrid/index. html (accessed December 9, 2010).
- U.S. Environmental Protection Agency. 2009 National Emissions Inventory. http://www.epa.gov/oar/data/neidb.html (accessed December 9, 2010).
- Pope, C.A. & D.W. Dockery. 2006. Health effects of fine particulate air pollution: lines that connect. *J. Air & Waste Manage. Assoc.* 56: 709–742.
- Levy, J. & J. Spengler. 2002. Modeling the benefits of power plant emission controls in Massachusetts. J. Air & Waste Manage. Assoc. 52: 5–18.
- Schneider, C. & M. Padian. 2004. Dirty Air, Dirty Power: Mortality and Health Damage Due to Air Pollution from Power Plants. Clean Air Task Force. Boston, MA.
- Levy, J., J. Hammitt & J. Spengler. 2000. Estimating the mortality impacts of particulate matter: What can be learned from between-study variability? *Environ. Health Perspect.* 108: 109–117
- 87. O'Neill, M.S., A. Veves, A. Zanobetti, *et al.* 2005. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. *Circulation* 111: 2913–2920.
- Ritz, B., M. Wilhelm & Y. Zhao. 2006. Air pollution and infant death in southern California, 1989–2000. *Pediatrics* 118: 493–502.
- Levy, J.I., J.D. Spengler, D. Hlinka & D. Sullivan. 2000.
 Estimated Public Health Impacts of Criteria Pollutant Air Emissions from the Salem Harbor and Brayton Point Power Plants. Harvard School of Public Health. Boston, MA.
- Schwartz, J., B. Coull, F. Laden & L. Ryan. 2007. The effect of dose and timing of dose on the association between airborne particles and survival. *Environ. Health Perspect.* 116: 64–69
- 91. Schwartz, J., 2010. Personal communication.
- 92. U.S. Environmental Protection Agency. 2009. National Ambient Air Quality Standards. http://www.epa.gov/air/criteria.html (accessed December 9, 2010).

- Dockery, D.W. et al. 1993. An association between air pollution and mortality in six U.S. cities. Engl. J. Med. 329: 1753–1759.
- Roman, H., K.D. Walker, T.L. Walsh, et al. 2008. Expert judgment assessment of the mortality impact of changes in ambient fine particulate matter in the US. Environ. Sci. Technol 42: 2268–2274.
- Jaworski, N., R. Howarth & L. Hetling. 1997. Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States. *Environ. Sci. Tech.* 31: 1995–2004.
- Townsend, A.R., W. Howarth, F.A. Bazzaz, et al. 2003. Human health effects of a changing global nitrogen cycle. Frontiers Ecol. Environ. 1: 240–246.
- 97. Heisler, J. et al. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8: 3–13.
- Kirkpatrick, B., L.E. Fleming, D. Squicciarini, et al. 2004. Literature review of Florida red tide: implications for human health effects. Harmful Algae 3: 99– 115.
- Shumway, S. 1990. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquacul. Soc. 21: 65–104.
- 100. Wang, J. & J. Wu. 2009. Occurrence and potential risks of harmful algal blooms in the East China Sea. Sci. Total Environ. 407: 4012–4021.
- 101. National Centers for Ocean Coastal Science. 2009. Economic Impacts of Harmful Algal Blooms. http://www.cop.noaa.gov/stressors/extremeevents/hab/current/econimpact_08.pdf (accessed December 9, 2010).
- 102. Hoagland, P. & S. Scatasta. 2006. The Economic Effects of Harmful Algal Blooms. Springer-Verlag. Dordrecht, the Netherlands.
- 103. Carlisle, E. 2009. The Gulf of Mexico Dead Zone and Red Tides. http://www.tulane.edu/∼bfleury/envirobio/enviroweb/DeadZone.htm (accessed December 9, 2010).
- 104. Driscoll, C.T., G.B. Lawrence, A.J. Bulger, et al. 2001. Acid rain revisited: advances in scientific understanding since the passage of the 1970 and 1990 Clean Air Act Amendments. Hubbard Brook Research Foundation. Science Links' Publication. Vol. 1, no.1, Hanover, NH.
- Yanai, R.D., T.G. Siccama, M.A. Arthur, et al. 1999. Accumulation and depletion of base cations in forest floors in the northeastern US. Ecology 80: 2774–2787.
- 106. Banzhaf, H., D. Burtraw, D. Evans & A. Krupnick. 2004. Valuation of natural resource improvements in the Adirondacks. Resources for the Future, Washington, DC. 40 pp http://www.rff.org/rff/Documents/RFF-RPT-Adirondacks.pdf (accessed December 17, 2010).
- 107. Northeast States for Coordinated Air Use Management. 2003. Mercury emissions from coal-fired power plants: the case for regulatory action. NESCAUM, Boston, MA. www.nescaum.org/documents/rpt031104mercury.pdf/ (accessed December 9, 2010).
- Rice, G.E., J.K. Hammitt & J.S. Evans. 2010. A probabilistic characterization of the health benefits of reducing methyl mercury intake in the United States. *Environ. Sci. Tech.* 44: 5216–5224.

- 109. IPCC. 2007. Climate Change 2007: Synthesis Report. Contribution of Work Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Geneva, Switzerland.
- U.S. Environmental Protection Agency. 2008. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2006. Washington, DC.
- Hansen, J., M. Sato, P. Kharecha, et al. 2007. Climate change and trace gases. Philos. Transact. A Math Phys Eng Sci. 365: 1925–1954.
- 112. Jacobson, M.Z. 2002. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. *J. Geo*phys. Res. 107: (D19), 4410, doi:10.1029/2001JD001376, 22pp. [pp ACH 16-1 to 16-22]. http://www.stanford.edu/ group/efmh/fossil/fossil.pdf (accessed December 9, 2010).
- Ramanathan, V. & G. Carmichael. 2008. Global and regional climate changes due to black carbon. *Nat. Geosci.* 1: 221–227.
- Levitus, S., J. Antonov & T. Boyer. 2005. Warming of the world ocean, 1955–2003. *Geophys. Res. Lett.* 32: L02604, doi:10.1029/2004GL021592.
- 115. Barnett, T., D.W. Pierce, K.M. AchutaRao, et al. 2005. Penetration of human-induced warming into the world's oceans. Science 309: 284–287.
- Epstein, P.R. & J.J. McCarthy. 2004. Assessing climate stability. Bull. Am. Meteorological Soc. 85: 1863–1870.
- 117. IPCC. 2007. Summary for Policymakers. In: Climate Change 2007: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press. Cambridge, UK. 7–22.
- 118. Cooke, W., C. Liousse, H. Cachier & J. Feichter. 1999. Construction of a 1 × 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. *J. Geophys. Res.* **104**: 22137–22162.
- 119. P.R. Epstein, P.R. & E. Mills (Eds.) 2005. Climate Change Futures: Health, Ecological and Economic Dimensions, Center for Health and the Global Environment, Harvard Medical School, Boston, MA.
- Thompson, C. 2010. Disaster capitalism. Mother Jones July/Aug. 2010.
- 121. Stern, N. 2003. Stern Review on the Economics of Climate Change. Cambridge University Press. Cambridge, UK.

- www.nescaum.org/documents/rpt031104mercury.pdf/ (accessed December 17, 2010).
- 122. Haszeldine, R. 2009. Carbon capture and storage: how green can black be? *Science* **325**: 1647–1652.
- 123. General Accounting Office. 2008. Climate Change: Federal Actions Will Greatly Affect the Viability of Carbon Capture and Storage as a Key Mitigation Option. Washington, DC.
- 124. Renard, F., E. Gundersen, R. Hellmann, et al. 2005. Numerical modeling of the effect of carbon dioxide sequestration on the rate of pressure solution creep in limestone: Preliminary results. Oil & Gas Sci. Tech. 60: 381–399.
- KNBC. 2006. Coroner: carbon dioxide killed men on mammoth mountain. http://www.knbc. com/news/8516441/detail.html (accessed December 9, 2010).
- 126. Konty, M.F. & J. Bailey. 2009. The impact of coal on the Kentucky State Budget. http://www.maced.org/coal/ (accessed December 9, 2010).
- 127. Energy Information Administration. 2008. Federal Financial Interventions and Subsidies in Energy Markets 2007. http://www.eia.doe.gov/oiaf/servicerpt/subsidy2/index.html (accessed December 9, 2010).
- 128. Environmental Law Institute. 2009. Estimating U.S. Government subsidies to energy sources: 2002–2008. 1–37. Washington, DC. http://www.eli.org/Program_Areas/innovation_governance_energy.cfm (accessed December 17, 2010).
- 129. Office of Surface Mining Reclamation and Enforcement. 2009. Estimating U.S. Government Subsidies to Energy Sources: 2002–2008. http://www.osmre.gov/aml/AML.shtm (accessed December 9, 2010).
- 130. Lockie, S., M. Franettovich, V. Petkova-Timmer, et al. 2009. Coal mining and the resource community cycle: a longitudinal assessment of the social impacts of the Coppabella coal mine. Environ. Impact Asses. 29: 330–339.
- Wood, L.E. 2005. Trends in national and regional economic distress: 1960–2000. http://www.arc.gov/assets/ research'reports/TrendsinNationalandRegionalEconomic-Distress1960to2000.pdf (accessed December 17, 2010).
- Marmot M. & R.G. Wilkinson. Eds. 2006. Social Determinants of Health. 2nd ed. Oxford University Press. Oxford, UK.

Wind Turbine Sound and Health Effects An Expert Panel Review

Prepared by (in alphabetical order):

W. David Colby, M.D.

Robert Dobie, M.D.

Geoff Leventhall, Ph.D.

David M. Lipscomb, Ph.D.

Robert J. McCunney, M.D.

Michael T. Seilo, Ph.D.

Bo Søndergaard, M.Sc.

Prepared for:

American Wind Energy Association

and

Canadian Wind Energy Association

December 2009

Contents

Sect	ion			Page
Exec	cutive S	ummary		ES-1
1	Intro	duction		1-1
	1.1		t Panelists	
	1.2		rt Terminology	
2	Meth	odology	y	2-1
	2.1		ation of Expert Panel	
	2.2	Revie	w of Literature Directly Related to Wind Turbines	2-1
	2.3	Revie	w of Potential Environmental Exposures	2-1
3	Over	view an	d Discussion	3-1
	3.1	Wind	Turbine Operation and Human Auditory Response to Sound	3-1
		3.1.1	Overview	3-1
		3.1.2	The Human Ear and Sound	3-2
		3.1.3	Sound Produced by Wind Turbines	3-3
		3.1.4	Sound Measurement and Audiometric Testing	3-5
	3.2	Sound	d Exposure from Wind Turbine Operation	3-6
		3.2.1	Infrasound and Low-Frequency Sound	3-6
		3.2.2	Vibration	3-9
		3.2.3	Vestibular System	3-11
	3.3	Poten	tial Adverse Effects of Exposure to Sound	
		3.3.1	Speech Interference	
		3.3.2	Noise-Induced Hearing Loss	3-13
		3.3.3	Task Interference	3-13
		3.3.4	Annoyance	3-13
		3.3.5	Sleep Disturbance	3-13
		3.3.6	Other Adverse Health Effects of Sound	3-13
		3.3.7	Potential Health Effects of Vibration Exposure	3-14
	3.4	Peer-I	Reviewed Literature Focusing on Wind Turbines, Low-Frequency	y
		Sound	d, and Infrasound	3-15
		3.4.1	Evaluation of Annoyance and Dose-Response Relationship of V	Wind
			Turbine Sound	3-15
		3.4.2	Annoyance	3-16
		3.4.3	Low-Frequency Sound and Infrasound	3-17
4	Resu	lts		4-1
	4.1	Infras	ound, Low-Frequency Sound, and Annoyance	4-1
		4.1.1	Infrasound and Low-Frequency Sound	4-2
		4.1.2	Annoyance	4-2
		4.1.3	Other Aspects of Annoyance	4-3
		111	Nacaba Effect	1 1

4.1.5 Somatoform Disorders 4.4 4.2 Infrasound, Low-frequency Sound and Disease 4-5 4.2.1 Vibroacoustic Disease 4-5 4.2.2 High-Frequency Exposures 4-6 4.2.3 Residential Exposure: A Case Series 4-6 4.2.4 Critique 4-7 4.3 Wind Turbine Syndrome 4-8 4.3.1 Evaluation of Infrasound on the Vestibular System 4-8 4.3.2 Evaluation of Infrasound on Internal organs 4-9 4.4 Visceral Vibratory Vestibular Disturbance 4-10 4.4.1 Hypothesis 4-10 4.4.2 Critique 4-11 4.5 Interpreting Studies and Reports 4-11 4.6 Standards for Siting Wind Turbines 4-13 4.6.1 Introduction 4-13 4.6.2 Noise Regulations and Ordinances 4-13 4.6.3 Wind Turbine Siting Guidelines 4-13 5 Conclusions 5-1 6 References 6-1 Appendices A Fundamentals of Sound <t< th=""><th>Secti</th><th>on</th><th></th><th>Page</th></t<>	Secti	on		Page
4.2 Infrasound, Low-frequency Sound and Disease 4-5 4.2.1 Vibroacoustic Disease 4-5 4.2.2 High-Frequency Exposure 4-6 4.2.3 Residential Exposure: A Case Series 4-6 4.2.4 Critique 4-7 4.3 Wind Turbine Syndrome 4-8 4.3.1 Evaluation of Infrasound on the Vestibular System 4-8 4.3.2 Evaluation of Infrasound on Internal organs 4-9 4.4 Visceral Vibratory Vestibular Disturbance 4-10 4.4.1 Hypothesis 4-10 4.4.2 Critique 4-11 4.5 Interpreting Studies and Reports 4-11 4.6 Standards for Siting Wind Turbines 4-13 4.6.1 Introduction 4-13 4.6.2 Noise Regulations and Ordinances 4-13 4.6.3 Wind Turbine Siting Guidelines 4-13 5 Conclusions 5-1 6 References 6-1 Appendices 4-1 A Fundamentals of Sound B Expert Panel Members Tab			4.1.5 Somatoform Disorders	4-4
4.2.1 Vibroacoustic Disease. 4-5 4.2.2 High-Frequency Exposure. 4-6 4.2.3 Residential Exposure: A Case Series. 4-6 4.2.4 Critique. 4-7 4.3 Wind Turbine Syndrome. 4-8 4.3.1 Evaluation of Infrasound on the Vestibular System. 4-8 4.3.2 Evaluation of Infrasound on Internal organs. 4-9 4.4 Visceral Vibratory Vestibular Disturbance. 4-10 4.4.1 Hypothesis. 4-10 4.4.2 Critique. 4-11 4.5 Interpreting Studies and Reports. 4-11 4.6 Standards for Siting Wind Turbines. 4-13 4.6.1 Introduction. 4-13 4.6.2 Noise Regulations and Ordinances. 4-13 4.6.3 Wind Turbine Siting Guidelines. 4-13 5 Conclusions. 5-1 6 References. 6-1 Appendices A Fundamentals of Sound B Fundamentals of Sound C Expert Panel Members 1-1 Definitions of Acoustical Ter		4.2		
4.2.2 High-Frequency Exposure 4-6 4.2.3 Residential Exposure: A Case Series 4-6 4.2.4 Critique 4-7 4.3 Wind Turbine Syndrome 4-8 4.3.1 Evaluation of Infrasound on the Vestibular System 4-8 4.3.2 Evaluation of Infrasound on Internal organs 4-9 4.4 Visceral Vibratory Vestibular Disturbance 4-10 4.4.1 Hypothesis 4-10 4.4.2 Critique 4-11 4.5 Interpreting Studies and Reports 4-11 4.6 Standards for Siting Wind Turbines 4-13 4.6.1 Introduction 4-13 4.6.2 Noise Regulations and Ordinances 4-13 4.6.3 Wind Turbine Siting Guidelines 4-13 5 Conclusions 5-1 6 References 6-1 Appendices A Fundamentals of Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms 1-2				
4.2.3 Residential Exposure: A Case Series 4-6 4.2.4 Critique 4-7 4.3 Wind Turbine Syndrome 4-8 4.3.1 Evaluation of Infrasound on the Vestibular System 4-8 4.3.2 Evaluation of Infrasound on Internal organs 4-9 4.4 Visceral Vibratory Vestibular Disturbance 4-10 4.4.1 Hypothesis 4-10 4.4.2 Critique 4-11 4.5 Interpreting Studies and Reports 4-11 4.6 Standards for Siting Wind Turbines 4-13 4.6.1 Introduction 4-13 4.6.2 Noise Regulations and Ordinances 4-13 4.6.3 Wind Turbine Siting Guidelines 4-13 5 Conclusions 5-1 6 References 6-1 Appendices A Fundamentals of Sound B The Human Ear 6-1 C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms				
4.2.4 Critique 4-7 4.3 Wind Turbine Syndrome 4-8 4.3.1 Evaluation of Infrasound on the Vestibular System 4-8 4.3.2 Evaluation of Infrasound on Internal organs 4-9 4.4 Visceral Vibratory Vestibular Disturbance 4-10 4.4.1 Hypothesis 4-10 4.4.2 Critique 4-11 4.5 Interpreting Studies and Reports 4-11 4.6 Standards for Siting Wind Turbines 4-13 4.6.1 Introduction 4-13 4.6.2 Noise Regulations and Ordinances 4-13 4.6.3 Wind Turbine Siting Guidelines 4-13 5 Conclusions 5-1 6 References 6-1 Appendices A Fundamentals of Sound 5-1 D Propagation of Sound 6-1 Expert Panel Members 1-2 Tables 1-1 1-1 Definitions of Acoustical Terms 1-2 3-1 Typical Sound Pressure Levels Measured in the Environment and Industry 3-2 4-1 Hearing Thresholds in the Infrasonic and Low Frequency Range 3-7 Figures 3-1 Sound Produced by Wind Turbine Flow 3-4 3-2 Hearing Contours for Equal Loudness Leve				
4.3.1 Evaluation of Infrasound on the Vestibular System 4.8 4.3.2 Evaluation of Infrasound on Internal organs 4.9 4.4 Visceral Vibratory Vestibular Disturbance 4.10 4.4.1 Hypothesis 4.10 4.4.2 Critique 4.11 4.5 Interpreting Studies and Reports 4.11 4.6 Standards for Siting Wind Turbines 4.13 4.6.1 Introduction 4.13 4.6.2 Noise Regulations and Ordinances 4.13 4.6.3 Wind Turbine Siting Guidelines 4.13 4.6.4 Standards for Siting Guidelines 4.13 4.6.5 Noise Regulations and Ordinances 4.13 4.6.6 Noise Regulations and Ordinances 4.13 4.6.7 Noise Regulations and Ordinances 4.13 4.6.8 Wind Turbine Siting Guidelines 4.13 5 Conclusions 5-1 6 References 6-1 Appendices 6-1 Appendices 7				
4.3.2 Evaluation of Infrasound on Internal organs 4-9 4.4 Visceral Vibratory Vestibular Disturbance 4-10 4.4.1 Hypothesis 4-10 4.4.2 Critique 4-11 4.5 Interpreting Studies and Reports 4-11 4.6 Standards for Siting Wind Turbines 4-13 4.6.1 Introduction 4-13 4.6.2 Noise Regulations and Ordinances 4-13 4.6.3 Wind Turbine Siting Guidelines 4-13 5 Conclusions 5-1 6 References 6-1 Appendices A Fundamentals of Sound B The Human Ear C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms 1-2 3-1 Typical Sound Pressure Levels Measured in the Environment and Industry 3-2 3-2 Hearing Thresholds in the Infrasonic and Low Frequency Range 3-7 Figures 3-1 Sound Produced by Wind Turbine Fl		4.3	Wind Turbine Syndrome	4-8
4.4 Visceral Vibratory Vestibular Disturbance 4-10 4.4.1 Hypothesis 4-10 4.4.2 Critique 4-11 4.5 Interpreting Studies and Reports 4-11 4.6 Standards for Siting Wind Turbines 4-13 4.6.1 Introduction 4-13 4.6.2 Noise Regulations and Ordinances 4-13 4.6.3 Wind Turbine Siting Guidelines 4-13 5 Conclusions 5-1 6 References 6-1 Appendices A Fundamentals of Sound B The Human Ear C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms 1-2 3-1 Typical Sound Pressure Levels Measured in the Environment and Industry 3-2 3-2 Hearing Thresholds in the Infrasonic and Low Frequency Range 3-7 Figures 3-1 Sound Produced by Wind Turbine Flow 3-4 3-2 Hearing Contours for Equal Loud			4.3.1 Evaluation of Infrasound on the Vestibular System	4-8
4.4.1 Hypothesis			4.3.2 Evaluation of Infrasound on Internal organs	4-9
4.4.2 Critique 4-11 4.5 Interpreting Studies and Reports 4-11 4.6 Standards for Siting Wind Turbines 4-13 4.6.1 Introduction 4-13 4.6.2 Noise Regulations and Ordinances 4-13 4.6.3 Wind Turbine Siting Guidelines 4-13 5 Conclusions 5-1 6 References 6-1 Appendices A Fundamentals of Sound B The Human Ear 6-1 C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms 1-2 3-1 Typical Sound Pressure Levels Measured in the Environment and Industry 3-2 3-2 Hearing Thresholds in the Infrasonic and Low Frequency Range 3-7 Figures 3-1 Sound Produced by Wind Turbine Flow 3-4 3-2 Hearing Contours for Equal Loudness Level (ISO:226, 2003) 3-9 3-3 Comparison of Excitation of an Object by Vibration and by Sound 3-10		4.4	Visceral Vibratory Vestibular Disturbance	4-10
4.5 Interpreting Studies and Reports			4.4.1 Hypothesis	4-10
4.6 Standards for Siting Wind Turbines				
4.6.1 Introduction		4.5		
4.6.2 Noise Regulations and Ordinances 4-13 4.6.3 Wind Turbine Siting Guidelines 4-13 5 Conclusions 5-1 6 References 6-1 Appendices A Fundamentals of Sound B The Human Ear C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms 1-2 3-1 Typical Sound Pressure Levels Measured in the Environment and Industry 3-2 3-2 Hearing Thresholds in the Infrasonic and Low Frequency Range 3-7 Figures 3-1 Sound Produced by Wind Turbine Flow 3-4 3-2 Hearing Contours for Equal Loudness Level (ISO:226, 2003) 3-9 3-3 Comparison of Excitation of an Object by Vibration and by Sound 3-10		4.6	O	
4.6.3 Wind Turbine Siting Guidelines				
5 Conclusions 5-1 6 References 6-1 Appendices A Fundamentals of Sound B The Human Ear C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms 1-2 3-1 Typical Sound Pressure Levels Measured in the Environment and Industry 3-2 3-2 Hearing Thresholds in the Infrasonic and Low Frequency Range 3-7 Figures 3-1 Sound Produced by Wind Turbine Flow 3-4 3-2 Hearing Contours for Equal Loudness Level (ISO:226, 2003) 3-9 3-3 Comparison of Excitation of an Object by Vibration and by Sound 3-10				
A Fundamentals of Sound B The Human Ear C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms			4.6.3 Wind Turbine Siting Guidelines	4-13
Appendices A Fundamentals of Sound B The Human Ear C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms	5	Cond	clusions	5-1
A Fundamentals of Sound B The Human Ear C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms	6	Refe	erences	6-1
A Fundamentals of Sound B The Human Ear C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms	App	endices	s	
B The Human Ear C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms				
C Measuring Sound D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms	A			
D Propagation of Sound E Expert Panel Members Tables 1-1 Definitions of Acoustical Terms				
Tables 1-1 Definitions of Acoustical Terms			<u>e</u>	
Tables 1-1 Definitions of Acoustical Terms				
1-1 Definitions of Acoustical Terms	E	Expe	ert Panel Members	
1-1 Definitions of Acoustical Terms				
3-1 Typical Sound Pressure Levels Measured in the Environment and Industry	Tabl	es		
3-2 Hearing Thresholds in the Infrasonic and Low Frequency Range	1-1	Defi	nitions of Acoustical Terms	1-2
Figures 3-1 Sound Produced by Wind Turbine Flow	3-1	Турі	ical Sound Pressure Levels Measured in the Environment and In-	dustry 3-2
3-1 Sound Produced by Wind Turbine Flow	3-2	Hear	ring Thresholds in the Infrasonic and Low Frequency Range	3-7
3-1 Sound Produced by Wind Turbine Flow	Figu	res		
 3-2 Hearing Contours for Equal Loudness Level (ISO:226, 2003)	Ū		nd Produced by Wind Turbine Flow	3_4
3-3 Comparison of Excitation of an Object by Vibration and by Sound				
	C-1			

Acronyms and Abbreviations

μPa microPascal

ACOEM American College of Occupational and Environmental Medicine

ANSI American National Standards Institute
AWEA American Wind Energy Association

ASHA American Speech-Language-Hearing Association

CanWEA Canadian Wind Energy Association

dB decibel

dBA decibel (on an A-weighted scale)

DNL day-night-level

DSM-IV-TR Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition

EPA U.S. Environmental Protection Agency

FDA Food and Drug Administration

FFT Fast Fourier Transform

GI gastrointestinal

HPA Health Protection Agency

Hz Hertz

IARC International Agency for Research on Cancer

ICD-10 International Statistical Classification of Diseases and Related Health

Problems, 10th Revision

IEC International Engineering Consortium

ISO International Organization for Standardization

Km kilometer kW kilowatt

L_{eq} equivalent level

LPALF large pressure amplitude and low frequency

m/s meters per second

m/s² meters per second squared

NIESH National Institute of Environmental Health Sciences

NIHL noise-induced hearing loss

NIOSH National Institute for Occupational Safety and Health

N/m² Newtons per square meterNRC National Research CouncilNTP National Toxicology Program

ONAC Office of Noise Abatement and Control

OSHA Occupational Safety and Health Administration

Pa Pascal

UK United Kingdom VAD vibroacoustic disease

VVVD vibratory vestibular disturbance

VEMP vestibular evoked myogenic potential response

WHO World Health Organization

Executive Summary

People have been harnessing the power of the wind for more than 5,000 years. Initially used widely for farm irrigation and millworks, today's modern wind turbines produce electricity in more than 70 countries. As of the end of 2008, there were approximately 120,800 megawatts of wind energy capacity installed around the world (Global Wind Energy Council, 2009).

Wind energy enjoys considerable public support, but it also has its detractors, who have publicized their concerns that the sounds emitted from wind turbines cause adverse health consequences.

In response to those concerns, the American and Canadian Wind Energy Associations (AWEA and CanWEA) established a scientific advisory panel in early 2009 to conduct a review of current literature available on the issue of perceived health effects of wind turbines. This multidisciplinary panel is comprised of medical doctors, audiologists, and acoustical professionals from the United States, Canada, Denmark, and the United Kingdom. The objective of the panel was to provide an authoritative reference document for legislators, regulators, and anyone who wants to make sense of the conflicting information about wind turbine sound.

The panel undertook extensive review, analysis, and discussion of the large body of peer-reviewed literature on sound and health effects in general, and on sound produced by wind turbines. Each panel member contributed a unique expertise in audiology, acoustics, otolaryngology, occupational/ environmental medicine, or public health. With a diversity of perspectives represented, the panel assessed the plausible biological effects of exposure to wind turbine sound.

Following review, analysis, and discussion of current knowledge, the panel reached consensus on the following conclusions:

- There is no evidence that the audible or sub-audible sounds emitted by wind turbines have any direct adverse physiological effects.
- The ground-borne vibrations from wind turbines are too weak to be detected by, or to affect, humans.
- The sounds emitted by wind turbines are not unique. There is no reason to believe, based on the levels and frequencies of the sounds and the panel's experience with sound exposures in occupational settings, that the sounds from wind turbines could plausibly have direct adverse health consequences.

SECTION 1

Introduction

The mission of the American Wind Energy Association (AWEA) is to promote the growth of wind power through advocacy, communication, and education. Similarly, the mission of the Canadian Wind Energy Association (CanWEA) is to promote the responsible and sustainable growth of wind power in Canada. Both organizations wish to take a proactive role in ensuring that wind energy projects are good neighbors to the communities that have embraced wind energy.

Together AWEA and CanWEA proposed to a number of independent groups that they examine the scientific validity of recent reports on the adverse health effects of wind turbine proximity. Such reports have raised public concern about wind turbine exposure. In the absence of declared commitment to such an effort from independent groups, the wind industry decided to be proactive and address the issue itself. In 2009, AWEA and CanWEA commissioned this report. They asked the authors to examine published scientific literature on possible adverse health effects resulting from exposure to wind turbines.

The objective of this report is to address health concerns associated with sounds from industrial-scale wind turbines. Inevitably, a report funded by an industry association will be subject to charges of bias and conflicts of interest. AWEA and CanWEA have minimized bias and conflicts of interest to the greatest possible extent through selection of a distinguished panel of independent experts in acoustics, audiology, medicine, and public health. This report is the result of their efforts.

1.1 Expert Panelists

The experts listed below were asked to investigate and analyze existing literature and publish their findings in this report; their current positions and/or qualifications for inclusion are also provided.

- W. David Colby, M.D.: Chatham-Kent Medical Officer of Health (Acting); Associate Professor, Schulich School of Medicine & Dentistry, University of Western Ontario
- Robert Dobie, M.D.: Clinical Professor, University of Texas, San Antonio; Clinical Professor, University of California, Davis
- Geoff Leventhall, Ph.D.: Consultant in Noise Vibration and Acoustics, UK
- David M. Lipscomb, Ph.D.: President, Correct Service, Inc.
- Robert J. McCunney, M.D.: Research Scientist, Massachusetts Institute of Technology Department of Biological Engineering; Staff Physician, Massachusetts General Hospital Pulmonary Division; Harvard Medical School
- Michael T. Seilo, Ph.D.: Professor of Audiology, Western Washington University

 Bo Søndergaard, M.Sc. (Physics): Senior Consultant, Danish Electronics Light and Acoustics (DELTA)

Mark Bastasch, an acoustical engineer with the consulting firm of CH2M HILL, acted as technical advisor to the panel.

1.2 Report Terminology

Certain terms are used frequently throughout this report. Table 1-1 defines these terms. An understanding of the distinction between "sound" and "noise" may be particularly useful to the reader.

Term	Definitions
Sound	Describes wave-like variations in air pressure that occur at frequencies that can stimulate receptors in the inner ear and, if sufficiently powerful, be appreciated at a conscious level.
Noise	Implies the presence of sound but also implies a response to sound: noise is often defined as unwanted sound.
Ambient noise level	The composite of noise from all sources near and far. The normal or existing level of environmental noise at a given location.
Decibel (dB)	A unit describing the amplitude of sound, equal to 20 times the logarithm to the base 10 of the ratio of the measured pressure to the reference pressure, which is 20 micropascals (μ Pa).
A-weighted sound pressure level (dBA)	The sound pressure level in decibels as measured on a sound level meter using the A-weighted filter network. The A-weighted filter de-emphasizes the very low and very high frequency components of the sound in a manner similar to the frequency response of the human ear and correlates well with subjective reactions to noise.
Hertz (Hz)	A unit of measurement of frequency; the number of cycles per second of a periodic waveform.
nfrasound	According to the International Electrotechnical Commission's (IEC's) IEC 1994, infrasound is: Acoustic oscillations whose frequency is below the low-frequency limit of audible sound (about 16 Hz). However this definition is incomplete as infrasound at high enough levels is audible at frequencies below 16 Hz.
	(IEC (1994): 60050-801:1994 International Electrotechnical Vocabulary - Chapter 801: Acoustics and electroacoustics).
Low-frequency sound	Sound in the frequency range that overlaps the higher infrasound frequencies and the lower audible frequencies, and is typically considered at 10 Hz to 200 Hz, but is not closely defined.

Source: HPA, 2009.

Methodology

Three steps form the basis for this report: formation of an expert panel, review of literature directly related to wind turbines, and review of potential environmental exposures.

2.1 Formation of Expert Panel

The American and Canadian wind energy associations, AWEA and CanWEA, assembled a distinguished panel of independent experts to address concerns that the sounds emitted from wind turbines cause adverse health consequences.

The objective of the panel was to provide an authoritative reference document for the use of legislators, regulators, and people simply wanting to make sense of the conflicting information about wind turbine sound.

The panel represented expertise in audiology, acoustics, otolaryngology, occupational/environmental medicine, and public health. A series of conference calls were held among panel members to discuss literature and key health concerns that have been raised about wind turbines. The calls were followed by the development of a draft that was reviewed by other panel members. Throughout the follow-up period, literature was critically addressed.

2.2 Review of Literature Directly Related to Wind Turbines

The panel conducted a search of Pub Med under the heading "Wind Turbines and Health Effects" to research and address peer-reviewed literature. In addition, the panel conducted a search on "vibroacoustic disease." The reference section identifies the peer and non-peer reviewed sources that were consulted by the panel.

2.3 Review of Potential Environmental Exposures

The panel conducted a review of potential environmental exposures associated with wind turbine operations, with a focus on low frequency sound, infrasound, and vibration.

SECTION 3

Overview and Discussion

This section summarizes the results of the review and analysis conducted by the expert panel and responds to a number of key questions:

- How do wind turbine operations affect human auditory response?
- How do we determine the loudness and frequency of sound and its effects on the human ear?
- How do wind turbines produce sound?
- How is sound measured and tested?
- What is vibration?
- What type of exposure to wind turbines is more likely to be perceived by humans (low frequency sound, infrasound or vibration)?
- Can sounds in the low frequency range, most notably the infrasonic range, adversely
 affect human health? Even when such levels are below the average person's ability to
 hear them?
- How does the human vestibular system respond to sound?
- What are the potential adverse effects and health implications of sound exposure?
- What does scientific literature say about wind turbines, low frequency sound, and infrasound?

3.1 Wind Turbine Operation and Human Auditory Response to Sound

3.1.1 Overview

The normal operation of a wind turbine produces sound and vibration, arousing concern about potential health implications. This section addresses the fundamental principles associated with sound and vibration, sound measurement, and potential adverse health implications. Sound from a wind turbine arises from its mechanical operation and the turning of the blades.

3-1

3.1.2 The Human Ear and Sound

The human ear is capable of perceiving a wide range of sounds, from the high-pitched sounds of a bird song to the low-pitched sound of a bass guitar. Sounds are perceived based on their loudness (i.e., volume or sound pressure level) or pitch (i.e., tonal or frequency content). The standard unit of measure for sound pressure levels is the decibel (dB). The standard unit used to describe the tonal or frequency content is the Hertz (Hz), measured in cycles per second) — Appendix A provides more information on the fundamentals of sound. Customarily, the young, non-pathological ear can perceive sounds ranging from 20 Hz to 20,000 Hz. Appendix B provides more information on the human ear.

Frequencies below 20 Hz are commonly called "infrasound," although the boundary between infrasound and low frequency sound is not rigid. Infrasound, at certain frequencies and at high levels, can be audible to some people. Low frequency sound is customarily referred to as that between 10 Hz and 200 Hz, but any definition is arbitrary to some degree. Low frequency sound is the subject of concern to some with respect to potential health implications.

TABLE 3-1
TYPICAL SOUND PRESSURE LEVELS MEASURED IN THE ENVIRONMENT AND INDUSTRY

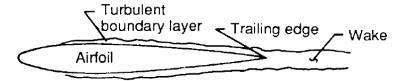
Noise Source At a Given Distance	A-Weighted Sound Level in Decibels	Qualitative Description
Carrier deck jet operation	140	
	130	Pain threshold
Jet takeoff (200 feet)	120	
Auto horn (3 feet)	110	Maximum vocal effort
Jet takeoff (1000 feet) Shout (0.5 feet)	100	
N.Y. subway station Heavy truck (50 feet)	90	Very annoying Hearing damage (8-hour, continuous exposure)
Pneumatic drill (50 feet)	80	Annoying
Freight train (50 feet) Freeway traffic (50 feet)	70 to 80	
	70	Intrusive (Telephone use difficult)
Air conditioning unit (20 feet)	60	
Light auto traffic (50 feet)	50	Quiet
Living room Bedroom	40	
Library Soft whisper (5 feet)	30	Very quiet
Broadcasting/Recording studio	20	
	10	Just audible

Adapted from Table E, "Assessing and Mitigating Noise Impacts", NY DEC, February 2001.

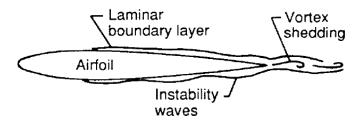
Table 3-1 shows sound pressure levels associated with common activities. Typically, environmental and occupational sound pressure levels are measured in decibels on an A-weighted scale (dBA). The A-weighted scale de-emphasizes the very low and very high frequency components of the sound in a manner similar to the frequency response of the human ear. For comparison, the sound from a wind turbine at distances between 1,000 and 2,000 feet is generally within 40 to 50 dBA.

Section 3.2 discusses the effects of exposure to wind turbine sound. Section 3.3 describes the potential adverse effects of sound exposure as well as the health implications.

3.1.3 Sound Produced by Wind Turbines


Wind turbine sound originates from either a mechanical or aerodynamic generation mechanism. Mechanical sound originates from the gearbox and control mechanisms. Standard noise control techniques typically are used to reduce mechanical sound. Mechanical noise is not typically the dominant source of noise from modern wind turbines (except for an occasional gear tone).

The aerodynamic noise is present at all frequencies, from the infrasound range over low frequency sound to the normal audible range and is the dominant source. The aerodynamic noise is generated by several mechanisms as is described below. The aerodynamic noise tends to be modulated in the mid frequency range, approximately 500 to 1,000 Hz.


Aerodynamic sound is produced by the rotation of the turbine blades through the air. A turbine blade shape is that of an airfoil. An airfoil is simply a structure with a shape that produces a lift force when air passes over it. Originally developed for aircraft, airfoil shapes have been adapted to provide the turning force for wind turbines by employing a shape which causes the air to travel more rapidly over the top of the airfoil than below it. The designs optimize efficiency by minimizing turbulence, which produces drag and noise. An aerodynamically efficient blade is a quiet one.

The aerodynamic sound from wind turbines is caused by the interaction of the turbine blade with the turbulence produced both adjacent to it (turbulent boundary layer) and in its near wake (see Figure 3-1) (Brooks et al., 1989). Turbulence depends on how fast the blade is moving through the air. A 100-meter-diameter blade, rotating once every three seconds, has a tip velocity of just over 100 meters per second. However, the speed reduces at positions closer to the centre of rotation (the wind turbine hub). The main determinants of the turbulence are the speed of the blade and the shape and dimensions of its cross-section.

FIGURE 3-1 Sound Produced by Wind Turbine Flow

Turbulent-boundary-layer—trailing-edge noise

Laminar-boundary-layer—vortex-shedding noise

The following conclusions have been derived from the flow conditions shown in Figure 3-1 (Brooks et al., 1989):

- At high velocities for a given blade, turbulent boundary layers develop over much of the airfoil. Sound is produced when the turbulent boundary layer passes over the trailing edge.
- At lower velocities, mainly laminar boundary layers develop, leading to vortex shedding at the trailing edge.

Other factors in the production of aerodynamic sound include the following:

- When the angle of attack is not zero—in other words, the blade is tilted into the wind—flow separation can occur on the suction side near to the trailing edge, producing sound.
- At high angles of attack, large-scale separation may occur in a stall condition, leading to radiation of low frequency sound.
- A blunt trailing edge leads to vortex shedding and additional sound.
- The tip vortex contains highly turbulent flow.

Each of the above factors may contribute to wind turbine sound production. Measurements of the location of the sound source in wind turbines indicate that the dominant sound is produced along the blade—nearer to the tip end than to the hub. Reduction of turbulence sound can be facilitated through airfoil shape and by good maintenance. For example, surface irregularities resulting from damage or to accretion of additional material, may increase the sound.

Aerodynamic sound has been shown to be generated at higher levels during the downward motion of the blade (i.e., the three o'clock position). This results in a rise in level of approximately once per second for a typical three-bladed turbine. This periodic rise in level is also referred to as amplitude modulation, and as described above for a typical wind turbine, the modulation frequency is 1 Hz (once per second). In other words, the sound level rises and falls about once per second. The origin of this amplitude modulation is not fully understood. It was previously assumed that the modulation was caused when the blade went past the tower (given the tower disturbed the airflow), but it is now thought to be related to the difference in wind speed between the top and bottom of the rotation of a blade and directivity of the aerodynamic noise (Oerlemans and Schepers, 2009).

In other words, the result of aerodynamic modulation is a perceivable fluctuation in the sound level of approximately once per second. The frequency content of this fluctuating sound is typically between 500 Hz and 1,000 Hz, but can occur at higher and lower frequencies. That is, the sound pressure levels between approximately 500 and 1,000 Hz will rise and fall approximately once per second. It should be noted, however, that the magnitude of the amplitude modulation that is observed when standing beneath a tower does not always occur at greater separation distances. A study in the United Kingdom (UK) also showed that only four out of about 130 wind farms had a problem with aerodynamic modulation and three of these have been solved (Moorhouse et al., 2007).

In addition to the sound levels generated by the turbines, environmental factors affect the levels received at more distant locations. For example, warm air near the ground causes the turbine sound to curve upwards, away from the ground, which results in reduced sound levels, while warm air in a temperature inversion may cause the sound to curve down to the earth resulting in increased sound levels. Wind may also cause the sound level to be greater downwind of the turbine—that is, if the wind is blowing from the source towards a receiver—or lower, if the wind is blowing from the receiver to the source. Most modeling techniques, when properly implemented, account for moderate inversions and downwind conditions. Attenuation (reduction) of sound can also be influenced by barriers, ground surface conditions, shrubbery and trees, among other things.

Predictions of the sound level at varying distances from the turbine are based on turbine sound power levels. These turbine sound power levels are determined through standardized measurement methods.

3.1.4 Sound Measurement and Audiometric Testing

As ound level meter is a standard tool used in the measurement of sound pressure levels. As described in Section 3.1.2, the standard unit of sound pressure level (i.e., volume) is dB and the standard unit used to describe the pitch or frequency is Hz (cycles per second). A sound level meter may use the A-weighting filter to adjust certain frequency ranges (those that humans detect poorly), resulting in a reading in dBA (decibels, A-weighted). Appendix C provides more information on the measurement of sound. The pitch or frequencies (sometimes referred to as sound level spectrum) can be quantified using a sound level meter that includes a frequency analyzer. Octave band, one-third octave band, and narrow band (such as Fast Fourier Transform, or FFT) are three common types of frequency analyzers.

Consider, for example, a routine audiometric test (hearing test) in which a person sits in a booth and wears headphones, through which sounds are transmitted to evaluate hearing. Outside the booth, a technician turns a dial which yields certain frequencies (for example, 125 Hz, a low-pitched sound, or 4,000 Hz, a high-pitched sound) and then the technician raises the volume of each frequency until the person recognizes the sound of each tone. This is a standard approach used to measure thresholds for many reasons, including noise-induced hearing loss (NIHL). As the technician raises the volume of the designated frequency, the sound level (in dB) is noted. People who need more than 25 dB at more than one frequency to hear the sound (ie loudness of the tone) are considered to have an abnormal test.

The effects of prolonged, high-level sound exposure on hearing have been determined through audiometric tests of workers in certain occupations. The studies have been published in major medical journals and subjected to the peer review process (see, for example, McCunney and Meyer, 2007). Studies of workers have also served as the scientific basis for regulations on noise in industry that are overseen by the Occupational Safety and Health Administration (OSHA). Workers in noise-intensive industries have been evaluated for NIHL and certain industries are known to be associated with high noise levels, such as aviation, construction, and areas of manufacturing such as canning. Multiyear worker studies suggest that prolonged exposure to high noise levels can adversely affect hearing. The levels considered sufficiently high to cause hearing loss are considerably higher than one could experience in the vicinity of wind turbines. For example, prolonged, unprotected high exposure to noise at levels greater than 90 dBA is a risk for hearing loss in occupational settings such that OSHA established this level for hearing protection. Sound levels from wind turbines do not approach these levels (50 dBA at a distance of 1,500 feet would be a conservative estimate for today's turbines). Although the issue of NIHL has rarely been raised in opposition to wind farms, it is important to note that the risk of NIHL is directly dependent on the intensity (sound level) and duration of noise exposure and therefore it is reasonable to conclude that there is no risk of NIHL from wind turbine sound. Such a conclusion is based on studies of workers exposed to noise and among whom risk of NIHL is not apparent at levels less than 75 dBA.

3.2 Sound Exposure from Wind Turbine Operation

This section addresses the questions of (1) whether sounds in the low frequency range, most notably the infrasonic range, adversely affect human health, and whether they do so even when such levels are below the average person's ability to hear them; (2) what we are referring to when we talk about vibration; and (3) how the human vestibular system responds to sound and disturbance.

3.2.1 Infrasound and Low-Frequency Sound

Infrasound and low frequency sound are addressed in some detail to offer perspective on publicized hypotheses that sound from a wind turbine may damage health even if the noise levels are below those associated with noise-induced hearing loss in industry. For example, it has been proposed that sounds that contain low frequency noise, most notably within the infrasonic level, can adversely affect health even when the levels are below the average person's ability to detect or hear them (Alves-Pereira and Branco, 2007b).

Comprehensive reviews of infrasound and its sources and measurement have been published (Berglund and Lindvall, 1995; Leventhall et al., 2003). Table 3-2 shows the sound pressure level, in decibels, of the corresponding frequency of infrasound and low frequency sound necessary for the sound to be heard by the average person (Leventhall et al., 2003).

Hearing Thresholds in the Infrasonic and Low Frequency Range

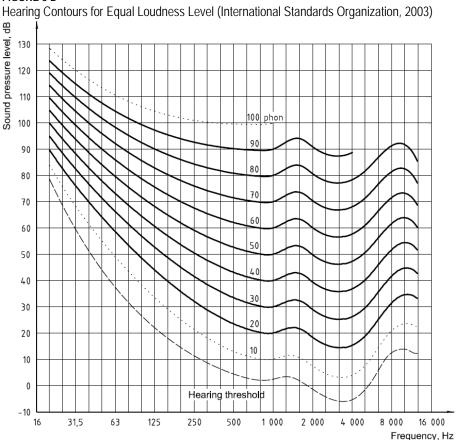
Frequency (Hz)	4	8	10	16	20	25	40	50	80	100	125	160	200
Sound pressure level (dB)	107	100	97	88	79	69	51	44	32	27	22	18	14

NOTE:

Average hearing thresholds (for young healthy people) in the infrasound (4 to 20 Hz) and low frequency region (10 to 200 Hz).

Source: Leventhall et al., 2003

As Table 3-2 indicates, at low frequencies, a much higher level sound is necessary for a sound to be heard in comparison to higher frequencies. For example, at 10 Hz, the sound must be at 97 dB to be audible. If this level occurred at the mid to high frequencies, which the ear detects effectively, it would be roughly equivalent to standing without hearing protection directly next to a power saw. Decibel for decibel, the low frequencies are much more difficult to detect than the high frequencies, as shown in the hearing threshold levels of Table 3-2.


Table 3-2 also shows that even sounds as low as 4 Hz can be heard if the levels are high enough (107 dB). However, levels from wind turbines at 4 Hz are more likely to be around 70 dB or lower, and therefore inaudible. Studies conducted to assess wind turbine noise have shown that wind turbine sound at typical distances does not exceed the hearing threshold and will not be audible below about 50 Hz (Hayes 2006b; Kamperman and James, 2008). The hearing threshold level at 50 Hz is 44 dB, as shown in Table 3-2. Recent work on evaluating a large number of noise sources between 10 Hz and 160 Hz suggests that wind turbine noise heard indoors at typical separation distances is modest on the scale of low frequency sound sources (Pedersen, 2008). The low levels of infrasound and low frequency sound from wind turbine operations have been confirmed by others (Jakobsen, 2004; van den Berg, 2004).

The low frequency sound associated with wind turbines has attracted attention recently since the A-weighting scale that is used for occupational and environmental regulatory compliance does not work well with sounds that have prominently low frequency components. Most environmental low frequency sound problems are caused by discrete tones (pitch or tones that are significantly higher in level (volume) than the neighboring frequencies); from, for example, an engine or compressor, not by continuous broadband sound. The high frequency sounds are assessed by the A-weighted measurement and, given their shorter wavelengths, are controlled more readily. Low frequency sounds may be irritating to some people and, in fact, some low frequency sound complaints prove impossible to resolve (Leventhall et al., 2003). This observation leads to a perception that there is something special, sinister, and harmful about low frequency sound. To the contrary, most external sound when heard indoors is biased towards low frequencies due to the efficient building attenuation of higher frequencies. One may recognize this when noise

from a neighbor's stereo is heard within their home—the bass notes are more pronounced than the higher frequency sounds. Any unwanted sound, whether high frequency or low frequency, can be irritating and stressful to some people.

Differences in how a low frequency sound and high frequency sound are perceived are well documented. Figure 3-2 shows that lower-frequency sounds typically need to be at a high sound pressure level (dB) to be heard. Figure 3-2 also demonstrates that as the frequency lowers, the audible range is compressed leading to a more rapid rise in loudness as the level changes in the lower frequencies. At 1,000 Hz, the whole range covers about 100 dB change in sound pressure level, while at 20 Hz the same range of loudness covers about 50 dB (note the contours displayed in Figure 3-2 are in terms of phons, a measure of equal loudness; for additional explanation on phons, the reader is referred to http://www.sfu.ca/sonic-studio/handbook/Phon.html [Truax, 1999]). As the annoyance of a given sound increases as loudness increases, there is also a more rapid growth of annoyance at low frequencies. However, there is no evidence for direct physiological effects from either infrasound or low frequency sound at the levels generated from wind turbines, indoors or outside. Effects may result from the sounds being audible, but these are similar to the effects from other audible sounds.

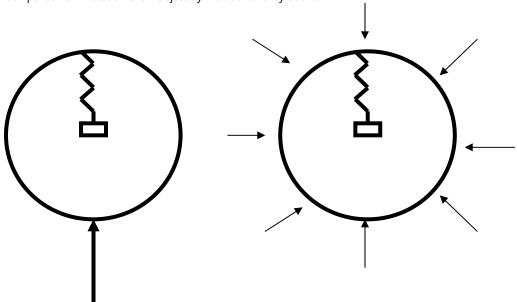
Low frequency sound and infrasound are further addressed in Section 3.3, Potential Adverse Effects of Exposure to Sound.

FIGURE 3-2

3.2.2 Vibration

Vibration, assumed to result from inaudible low frequency sounds, has been postulated to have a potential adverse effect on health. This section defines vibration, describes how it is measured, and cites studies that have addressed the risk of vibration on health.

Vibration refers to the way in which energy travels through solid material, whether steel, concrete in a bridge, the earth, the wall of a house or the human body. Vibration is distinguished from sound, which is energy flowing through gases (like air) or liquids (like water).


As higher frequency vibrations attenuate rapidly, it is low frequencies which are of potential concern to human health. When vibration is detected through the feet or through the seat, the focus of interest is the vibration of the surface with which one is in contact—for example, when travelling in a vehicle.

Vibration is often measured by the acceleration of the surface in meters per second, squared (m/s^2) , although other related units are used. Vibration can also be expressed in decibels, where the reference excitation level used in buildings is often 10-5 m/s² and the vibration level is $20\log (A/10^{-5})$ dB, where A is the acceleration level in m/s².

The threshold of perception of vibration by humans is approximately 0.01 m/s^2 . If a frequency of excitation (vibration) corresponds with a resonant frequency of a system, then excitation at the resonant frequency is greater than at other frequencies. However, excitation by sound is not the same as excitation by mechanical excitation applied at, say, the feet.

Figure 3-3 shows an object excited by point mechanical vibration and by sound. The object contains a resiliently suspended system. For example, if the object was the body, the suspended system might be the viscera (internal organs of the body). The left hand of the figure can be interpreted as the body vibrated by input to the feet. The vibration of the viscera will be maximum at the resonant frequency¹ of the suspended system, which, for viscera, is about 4 Hz. When excitation is by long wavelength low frequency sound waves, as shown at the right of the figure, not only is the force acting on the body much smaller than for vibration input, but, as the wavelength is much greater than the dimensions of the body, it is acting around the body in a compressive manner so that there is no resultant force on the suspended system and it does not vibrate or resonate.

FIGURE 3-3
Comparison of Excitation of an Object by Vibration and by Sound

Unfortunately, this lack of effect has not been addressed by those who have suggested the mechanical vibration response of the body instead of the acoustic response as a potential health consequence. This oversight has led to inaccurate conclusions. For example, Dr. Nina Pierpont bases one of her key hypotheses for the cause of "wind turbine syndrome" on such an egregious error (Pierpont, 2009, pre-publication draft). Although not a recognized medical diagnosis, "wind turbine syndrome" has been raised as a concern for proposed projects—refer to Section 4.3 for more information.

Vibration of the body by sound at one of its resonant frequencies occurs only at very high sound levels and is not a factor in the perception of wind turbine noise. As will be discussed

¹ A common example of resonance is pushing a child on a swing in which energy is given to the swing to maximize its oscillation.

below, the sound levels associated with wind turbines do not affect the vestibular or other balance systems.

3.2.3 Vestibular System

The vestibular system of the body plays a major role in maintaining a person's sense of balance and the stabilization of visual images. The vestibular system responds to pressure changes (sound pressure, i.e., decibels) at various frequencies. At high levels of exposure to low frequency sound, nausea and changes in respiration and blood pressure may occur. Studies have shown, however, that for these effects to occur, considerably high noise levels (greater than 140 dB, similar in sound level of a jet aircraft heard 80 feet away) are necessary (Berglund et al., 1996).

Head vibration resulting from low frequency sound has been suggested as a possible cause of a variety of symptoms that some hypothesize as being associated with wind turbines. In order to properly assess this hypothesis, this section addresses the human vestibular system. The "vestibular system" comprises the sense organs in the vestibular labyrinth, in which there are five tiny sensory organs: three semicircular canals that detect head rotation and two chalk-crystal-studded organs called otoliths (literally "ear-stones") that detect tilt and linear motion of the head. All five organs contain hair cells, like those in the cochlea, that convert motion into nerve impulses traveling to the brain in the vestibular nerve.

These organs evolved millions of years before the middle ear. Fish, for example, have no middle ear or cochlea but have a vestibular labyrinth nearly identical to ours (Baloh and Honrubia, 1979). The vestibular organs are specialized for stimulation by head position and movement, not by airborne sound. Each vestibular organ is firmly attached to the skull, to enable them to respond to the slightest head movement. In contrast, the hair cells in the cochlea are not directly attached to the skull; they do not normally respond to head movement, but to movements of the inner ear fluids.

The otolith organs help fish hear low frequency sounds; even in primates, these organs will respond to head vibration (i.e., bone-conducted sound) at frequencies up to 500 Hz (Fernandez and Goldberg, 1976). These vibratory responses of the vestibular system can be elicited by *airborne* sounds, however, only when they are at a much higher level than normal hearing thresholds² (and much higher than levels associated with wind turbine exposure). Thus, they do not help us hear but appear to be vestiges of our evolutionary past.

The vestibular nerve sends information about head position and movement to centers in the brain that also receive input from the eyes and from stretch receptors in the neck, trunk, and

_

² Young et al. (1977) found that neurons coming from the vestibular labyrinth of monkeys responded to head vibration at frequencies of 200-400 Hz, and at levels as low as 70 to 80 dB below gravitational force. However, these neurons could not respond to airborne sound at the same frequencies until levels exceeded 76 dB sound pressure level (SPL), which is at least 40 dB higher than the normal threshold of human hearing in this frequency range. Human eye movements respond to 100 Hz head vibration at levels 15 dB below audible levels (Todd et al., 2008a). This does not mean that the vestibular labyrinth is more sensitive than the cochlea to airborne sound, because the impedance-matching function of the middle ear allows the cochlea to respond to sounds that are 50-60 dB less intense than those necessary to cause detectable head vibration. Indeed, the same authors (Todd et al., 2008b) found that for airborne sound, responses from the cochlea could always be elicited by sounds that were below the threshold for vestibular responses. Similarly, Welgampola et al. (2003) found that thresholds for vestibular evoked myogenic potential response (VEMP) were higher than hearing thresholds and stated: "the difference between hearing thresholds and VEMP thresholds is much greater for air conducted sounds than for bone vibration." In other words, the vestigial vestibular response to sound is relatively sensitive to bone conduction, which involves vibration of the whole head, and much less sensitive to air conduction.

legs (these stretch receptors tell which muscles are contracted and which joints are flexed, and provide the "proprioceptive" sense of the body's position and orientation in space). The brain integrates vestibular, visual, and proprioceptive inputs into a comprehensive analysis of the position and movement of the head and body, essential for the sense of balance, avoidance of falls, and keeping the eyes focused on relevant targets, even during movement.

Perception of the body's position in space may also rely in part on input from receptors in abdominal organs (which can shift back and forth as the body tilts) and from pressure receptors in large blood vessels (blood pools in the legs when standing, then shifts back to the trunk when lying down). These "somatic graviceptors" (Mittelstaedt, 1996) could be activated by whole-body movement and possibly by structure-borne vibration, or by the blast of a powerful near explosion, but, as described in Section 4.3.2, it is unlikely that intraabdominal and intra-thoracic organs and blood vessels could detect airborne sound like that created by wind turbines.

Trauma, toxins, age-related degeneration, and various ear diseases can cause disorders of the vestibular labyrinth. A labyrinth not functioning properly can cause a person to feel unsteady or even to fall. Since the semicircular canals of the ear normally detect head rotation (such as shaking the head to indicate "no"), one of the consequences of a dysfunctional canal is that a person may feel a "spinning" sensation. This reaction is described as vertigo, from the Latin word to turn. In normal conversation, words like vertigo and dizziness can be used in ambiguous ways and thus make careful interpretation of potential health claims problematic. "Dizzy," for example, may mean true vertigo or unsteadiness, both of which may be symptoms of inner ear disease. A person who describes being "dizzy" may actually be experiencing light-headedness, a fainting sensation, blurred vision, disorientation, or almost any other difficult-to-describe sensation in the head. The word "dizziness" can represent different sensations to each person, with a variety of causes. This can make the proper interpretation of research studies in which dizziness is evaluated a challenge to interpret.

Proper diagnostic testing to evaluate dizziness can reduce errors in misclassifying disease. The vestibular labyrinth, for example, can be tested for postural stability. Information from the semicircular canals is fed to the eye muscles to allow us to keep our eyes focused on a target; when the head moves; this "vestibulo-ocular reflex" is easily tested and can be impaired in vestibular disorders (Baloh and Honrubia, 1979).

3.3 Potential Adverse Effects of Exposure to Sound

Adverse effects of sound are directly dependent on the sound level; higher frequency sounds present a greater risk of an adverse effect than lower levels (see Table 3-2). Speech interference, hearing loss, and task interference occur at high sound levels. Softer sounds may be annoying or cause sleep disturbance in some people. At normal separation distances, wind turbines do not produce sound at levels that cause speech interference, but some people may find these sounds to be annoying.

3.3.1 Speech Interference

It is common knowledge that conversation can be difficult in a noisy restaurant; the louder the background noise, the louder we talk and the harder it is to communicate. Average levels of casual conversation at 1 meter (arm's length) are typically 50 to 60 dBA. People raise their voices—slightly and unconsciously at first—when ambient levels exceed 50 to 55 dBA, in order to keep speech levels slightly above background noise levels. Communication at arm's length requires conscious extra effort when levels exceed about 75 dBA. Above ambient levels of 80 to 85 dBA, people need to shout or get closer to converse (Pearsons et al., 1977; Webster, 1978). Levels below 45 dBA can be considered irrelevant with respect to speech interference.

3.3.2 Noise-Induced Hearing Loss

Very brief and intense sounds (above 130 dBA, such as in explosions) can cause instant cochlear damage and permanent hearing loss, but most occupational NIHL results from prolonged exposure to high noise levels between 90 and 105 dBA (McCunney and Meyer 2007). Regulatory (OSHA, 1983) and advisory (NIOSH, 1998) authorities in the U.S. concur that risk of NIHL begins at about 85 dBA, for an 8-hour day, over a 40-year career. Levels below 75 dBA do not pose a risk of NIHL. Thus, the sound levels associated with wind turbine operations would not cause NIHL because they are not high enough.

3.3.3 Task Interference

Suter (1991) reviewed the effects of noise on performance and behavior. Simple tasks may be unaffected even at levels well above 100 dBA, while more complex tasks can be disrupted by intermittent noise as low as 75 dBA. Speech sounds are usually more disruptive than nonspeech sounds. Levels below 70 dBA do not result in task interference.

3.3.4 Annoyance

Annoyance as a possible "effect" of wind turbine operations is discussed in detail in later sections of this report (Sections 3.4 and 4.1). In summary, annoyance is a subjective response that varies among people to many types of sounds. It is important to note that although annoyance may be a frustrating experience for people, it is not considered an adverse health effect or disease of any kind. Certain everyday sounds, such as a dripping faucet—barely audible—can be annoying. Annoyance cannot be predicted easily with a sound level meter. Noise from airports, road traffic, and other sources (including wind turbines) may annoy some people, and, as described in Section 4.1, the louder the noise, the more people may become annoyed.

3.3.5 Sleep Disturbance

The U.S. Environmental Protection Agency (EPA) document titled *Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety* (1974) recommends that indoor day-night-level (DNL) not exceed 45 dBA. DNL is a 24-hour average that gives 10 dB extra weight to sounds occurring between 10p.m. and 7 a.m., on the assumption that during these sleep hours, levels above 35 dBA indoors may be disruptive.

3.3.6 Other Adverse Health Effects of Sound

At extremely high sound levels, such as those associated with explosions, the resulting sound pressure can injure any air-containing organ: not only the middle ear (eardrum

perforations are common) but also the lungs and intestines (Sasser et al., 2006). At the other extreme, any sound that is chronically annoying, including very soft sounds, may, for some people, create chronic stress, which can in turn lead to other health problems. On the other hand, many people become accustomed to regular exposure to noise or other potential stressors, and are no longer annoyed. The hypothesis that chronic noise exposure might lead to chronic health problems such as hypertension and heart disease has been the subject of hundreds of contradictory studies of highly variable quality, which will not be reviewed in this document. Other authors have reviewed this literature, and some of their conclusions are quoted below:

"It appears not likely that noise in industry can be a direct cause of general health problems..., except that the noise can create conditions of psychological stress...which can in turn cause physiological stress reactions..." (Kryter, 1980)

"Epidemiological evidence on noise exposure, blood pressure, and ischemic heart disease is still limited." (Babisch, 2004), and "contradictory' (Babisch, 1998), but "there is some evidence...of an increased risk in subjects who live in noisy areas with outdoor noise levels of greater than 65 - 70 dBA." (Babisch, 2000)

"The present state of the art does not permit any definite conclusion to be drawn about the risk of hypertension." (van Dijk, Ettema, and Zielhuis, 1987)

"At this point, the relationship between noise induced hearing loss and hypertension must be considered as possible but lacking sufficient evidence to draw causal associations." (McCunney and Meyer, 2007)

3.3.7 Potential Health Effects of Vibration Exposure

People may experience vibration when some part of the body is in direct contact with a vibrating object. One example would be holding a chainsaw or pneumatic hammer in the hands. Another would be sitting in a bus, truck, or on heavy equipment such as a bulldozer. Chronic use of vibrating tools can cause "hand-arm vibration syndrome," a vascular insufficiency condition characterized by numbness and tingling of the fingers, cold intolerance, "white-finger" attacks, and eventually even loss of fingers due to inadequate blood supply. OSHA does not set limits for vibration exposure, but the American National Standards Institute (ANSI) (2006) recommends that 8-hour workday exposures to hand-arm vibration (5 to 1400 Hz, summed over three orthogonal axes of movement) not exceed acceleration values of 2.5 m/s².

Excessive whole-body vibration is clearly linked to low back pain (Wilder, Wasserman, and Wasserman, 2002) and may contribute to gastrointestinal and urinary disorders, although these associations are not well established. ANSI (1979) recommends 8-hour limits for whole-body vibration of 0.3 m/s^2 , for the body's most sensitive frequency range of 4 to 8 Hz. This is about 30 times more intense than the weakest vibration that people can detect (0.01 m/s^2) .

Airborne sound can cause detectable body vibration, but this occurs only at very high levels—usually above sound pressure levels of 100 dB (unweighted) (Smith, 2002; Takahashi et al., 2005; Yamada et al., 1983). There is no scientific evidence to suggest that modern wind turbines cause perceptible vibration in homes or that there is an associated health risk.

3.4 Peer-Reviewed Literature Focusing on Wind Turbines, Low-Frequency Sound, and Infrasound

This section addresses the scientific review of the literature that has evaluated wind turbines, the annoyance effect, low frequency sound, and infrasound.

3.4.1 Evaluation of Annoyance and Dose-Response Relationship of Wind Turbine Sound

To date, three studies in Europe have specifically evaluated potential health effects of people living in proximity to wind turbines (Pedersen and Persson Waye, 2004; Pedersen and Persson Waye, 2007; Pedersen et al., 2009). These studies have been primarily in Sweden and the Netherlands. Customarily, an eligible group of people are selected for possible participation in the study based on their location with respect to a wind turbine. Control groups have not been included in any of these reports.

In an article published in August 2009, investigators reported the results of their evaluation of 725 people in the Netherlands, who lived in the vicinity of wind turbines (Pedersen et al., 2009). The potential study population consisted of approximately 70,000 people living within 2.5 kilometers of a wind turbine at selected sites in the Netherlands. The objective of the study was to (1) assess the relationship between wind turbine sound levels at dwellings and the probability of noise annoyance, taking into account possible moderating factors, and (2) explore the possibility of generalizing a dose response relationship for wind turbine noise by comparing the results of the study with previous studies in Sweden.

Noise impact was quantified based on the relationship between the sound level (dose) and response with the latter measured as the proportion of people annoyed or highly annoyed by sound. Prior to this study, dose response curves had been modeled for wind turbines. Previous studies have noted different degrees of relationships between wind turbine sound levels and annoyance (Wolsink et al., 1993; Pedersen and Persson Waye, 2004; Pedersen and Persson Waye, 2007).

Subjective responses were obtained through a survey. The calculation of the sound levels (dose) in Sweden and the Netherlands were similar. A dose response relationship was observed between calculated A-weighted sound pressure levels and annoyance. Sounds from wind turbines were found to be more annoying than several other environmental sources at comparable sound levels. A strong correlation was also noted between noise annoyance and negative opinion of the impact of wind turbines on the landscape, a finding in earlier studies as well. The dominant quality of the sound was a swishing, the quality previously found to be the most annoying type.

The authors concluded that this study could be used for calculating a dose response curve for wind turbine sound and annoyance. The study results suggest that wind turbine sound is easily perceived and, compared with sound from other sources, is annoying to a small percentage of people (5 percent at 35 to 40 dBA).

In this study, the proportion of people who reported being annoyed by wind turbine noise was similar to merged data from two previous Swedish studies (Pederson and Persson

Waye, 2004; Pedersen and Persson Waye, 2007). About 5 percent of respondents were annoyed at noise levels between 35 to 40 dBA and 18 percent at 40 to 45 dBA.

Pedersen et al. also reported significant dose responses between wind turbine sound and self-reported annoyance (Pedersen and Persson Waye, 2004). High exposed individuals responded more (78 percent) than low exposed individuals (60 percent), which suggests that bias could have played a role in the final results.

An analysis of two cross-sectional socio-acoustic studies — one that addressed flat landscapes in mainly rural settings (Pedersen and Persson Waye, 2004) and another in different terrains (complex or flat) and different levels of urbanization (rural or suburban) (Pedersen and Persson Waye, 2007) — was performed (Pedersen, 2008). Approximately 10 percent of over 1000 people surveyed via a questionnaire reported being very annoyed at sound levels of 40 dB and greater. Attitude toward the visual impact of the wind turbines had the same effect on annoyance. Response to wind turbine noise was significantly related to exposure expressed as A-weighted sound pressure levels dB. Among those who could hear wind turbine sound, annoyance with wind turbine noise was highly correlated to the sound characteristics: swishing, whistling, resounding and pulsating/throbbing (Pedersen, 2008).

A similar study in Sweden evaluated 754 people living near one of seven sites where wind turbine power was greater than 500 kilowatt (kW) (Pedersen and Persson Waye, 2007). Annoyance was correlated with sound level and also with negative attitude toward the visual impact of the wind turbines. Note that none of these studies included a control group. Earlier field studies performed among people living in the vicinity of wind turbines showed a correlation between sound pressure level and noise annoyance; however, annoyance was also influenced by visual factors and attitudes toward the impact of the wind turbines on the landscape. Noise annoyance was noted at lower sound pressure levels than annoyance from traffic noise. Although some people may be affected by annoyance, there is no scientific evidence that noise at levels created by wind turbines could cause health problems (Pedersen and Högskolan, 2003).

3.4.2 Annoyance

A feeling described as "annoyance" can be associated with acoustic factors such as wind turbine noise. There is considerable variability, however, in how people become "annoyed" by environmental factors such as road construction and aviation noise, among others (Leventhall, 2004). Annoyance is clearly a subjective effect that will vary among people and circumstances. In extreme cases, sleep disturbance may occur. Wind speed at the hub height of a wind turbine at night may be up to twice as high as during the day and may lead to annoyance from the amplitude modulated sound of the wind turbine (van den Berg, 2003). However, in a study of 16 sites in 3 European countries, only a weak correlation was noted between sound pressure level and noise annoyance from wind turbines (Pedersen and Högskolan, 2003).

In a detailed comparison of the role of noise sensitivity in response to environmental noise around international airports in Sydney, London, and Amsterdam, it was shown that noise sensitivity increases one's perception of annoyance independently of the level of noise exposure (van Kamp et al., 2004).

In a Swedish study, 84 out of 1,095 people living in the vicinity of a wind turbine in 12 geographical areas reported being fairly or very annoyed by wind turbines (Pedersen, 2008). It is important to note that no differences were reported among people who were "annoyed" in contrast to those who were not annoyed with respect to hearing impairment, diabetes, or cardiovascular disease. An earlier study in Sweden showed that the proportion of people "annoyed" by wind turbine sound is higher than for other sources of environmental noise at the same decibel level (Pedersen and Persson Waye, 2004).

3.4.3 Low-Frequency Sound and Infrasound

No scientific studies have specifically evaluated health effects from exposure to low frequency sound from wind turbines. Natural sources of low frequency sound include wind, rivers, and waterfalls in both audible and non-audible frequencies. Other sources include road traffic, aircraft, and industrial machinery. The most common source of infrasound is vehicular (National Toxicology Program, 2001).

Infrasound at a frequency of 20 Hz (the upper limit of infrasound) is not detectable at levels lower than than 79 dB (Leventhall et al., 2003). Infrasound at 145 dB at 20 Hz and at 165 dB at 2 Hz can stimulate the auditory system and cause severe pain (Leventhall, 2006). These noise levels are substantially higher than any noise generated by wind turbines. The U.S. Food and Drug Administration (FDA) has approved the use of infrasound for therapeutic massage at 70 dB in the 8 to 14 Hz range (National Toxicology Program, 2001). In light of the FDA approval for this type of therapeutic use of infrasound, it is reasonable to conclude that exposure to infrasound in the 70 dB range is safe. According to a report of the National Research Council (NRC), low frequency sound is a concern for older wind turbines but not the modern type (National Research Council, 2007).

SECTION 4

Results

This section discusses the results of the analysis presented in Section 3. Potential effects from infrasound, low frequency sound, and the fluctuating aerodynamic "swish" from turbine blades are examined. Proposed hypotheses between wind turbine sound and physiological effects in the form of vibroacoustic disease, "wind turbine syndrome," and visceral vibratory vestibular disturbance are discussed.

4.1 Infrasound, Low-Frequency Sound, and Annoyance

Sound levels from wind turbines pose no risk of hearing loss or any other nonauditory effect. In fact, a recent review concluded that "Occupational noise-induced hearing damage does not occur below levels of 85 dBA." (Ising and Kruppa, 2004) The levels of sound associated with wind turbine operations are considerably lower than industry levels associated with noise induced hearing loss.

However, some people attribute certain health problems to wind turbine exposure. To make sense of these assertions, one must consider not only the sound but the complex factors that may lead to the perception of "annoyance." Most health complaints regarding wind turbines have centered on sound as the cause. There are two types of sounds from wind turbines: mechanical sound, which originates from the gearbox and control mechanisms, and the more dominant aerodynamical sound, which is present at all frequencies from the infrasound range over low frequency sound to the normal audible range.

Infrasound from natural sources (for example, ocean waves and wind) surrounds us and is below the audible threshold. The infrasound emitted from wind turbines is at a level of 50 to 70 dB, sometimes higher, but well below the audible threshold. There is a consensus among acoustic experts that the infrasound from wind turbines is of no consequence to health. One particular problem with many of these assertions about infrasound is that is that the term is often misused when the concerning sound is actually low frequency sound, not infrasound.

Under many conditions, low frequency sound below about 40 Hz cannot be distinguished from environmental background sound from the wind itself. Perceptible (meaning above both the background sound and the hearing threshold), low frequency sound can be produced by wind turbines under conditions of unusually turbulent wind conditions, but the actual sound level depends on the distance of the listener from the turbine, as the sound attenuates (falls off) with distance. The higher the frequency, the greater the sound attenuates with distance — Appendix D provides more information on the propagation of sound. The low frequency sound emitted by spinning wind turbines could possibly be annoying to some when winds are unusually turbulent, but there is no evidence that this level of sound could be harmful to health. If so, city dwelling would be impossible due to the similar levels of ambient sound levels normally present in urban environments. Nevertheless, a small number of people find city sound levels stressful.

It is not usually the low frequency nonfluctuating sound component, however, that provokes complaints about wind turbine sound. The fluctuating aerodynamic sound (swish) in the 500 to 1,000 Hz range occurs from the wind turbine blades disturbing the air, modulated as the blades rotate which changes the sound dispersion characteristics in an audible manner. This fluctuating aerodynamic sound is the cause of most sound complaints regarding wind turbines, as it is harder to become accustomed to fluctuating sound than to sound that does not fluctuate. However, this fluctuation does not always occur and a UK study showed that it had been a problem in only four out of 130 UK wind farms, and had been resolved in three of those (Moorhouse et al., 2007).

4.1.1 Infrasound and Low-Frequency Sound

Infrasound occurs at frequencies less than 20 Hz. At low and inaudible levels, infrasound has been suggested as a cause of "wind turbine syndrome" and vibroacoustic disease (VAD)—refer to Section 4.2.1 for more information on VAD. For infrasound to be heard, high sound levels are necessary (see Section 3, Table 3-2). There is little risk of short term acute exposure to high levels of infrasound. In experiments related to the Apollo space program, subjects were exposed to between 120 and 140 dB without known harmful effects. High level infrasound is less harmful than the same high levels of sound in the normal audible frequency range.

High levels of low frequency sound can excite body vibrations (Leventhall, 2003). Early attention to low frequency sound was directed to the U.S. space program, studies from which suggested that 24-hour exposures to 120 to 130 dB are tolerable below 20 Hz, the upper limit of infrasound. Modern wind turbines produce sound that is assessed as infrasound at typical levels of 50 to 70 dB, below the hearing threshold at those frequencies (Jakobsen, 2004). Jakobsen concluded that infrasound from wind turbines does not present a health concern. Fluctuations of wind turbine sound, most notably the swish-swish sounds, are in the frequency range of 500 to 1,000 Hz, which is neither low frequency sound nor infrasound. The predominant sound from wind turbines, however, is often mischaracterized as infrasound and low frequency sound. Levels of infrasound near modern-scale wind farms are in general not perceptible to people. In the human body, the beat of the heart is at 1 to 2 Hz. Higher-frequency heart sounds measured externally to the body are in the low frequency range (27 to 35 dB at 20 to 40 Hz), although the strongest frequency is that of the heartbeat (Sakai, Feigen, and Luisada, 1971). Lung sounds, measured externally to the body are in the range of 5 to 35 dB at 150 to 600 Hz (Fiz et al., 2008). Schust (2004) has given a comprehensive review of the effects of high level low frequency sound, up to 100 Hz.

4.1.2 Annoyance

Annoyance is a broad topic on which volumes have been written. Annoyance can be caused by constant amplitude and amplitude modulated sounds containing rumble (Bradley, 1994).

As the level of sound rises, an increasing number of those who hear it may become distressed, until eventually nearly everybody is affected, although to different degrees. This is a clear and easily understood process. However, what is not so clearly understood is that when the level of the sound reduces, so that very few people are troubled by it, there remain a small number who may be adversely affected. This occurs at all frequencies, although there seems to be more subjective variability at the lower frequencies. The effect of low

frequency sound on annoyance has recently been reviewed (Leventhall, 2004). The standard deviation of the hearing threshold is approximately 6 dB at low frequencies (Kurakata and Mizunami, 2008), so that about 2.5 percent of the population will have 12 dB more sensitive hearing than the average person. However, hearing sensitivity alone does not appear to be the deciding factor with respect to annoyance. For example, the same type of sound may elicit different reactions among people: one person might say "Yes, I can hear the sound, but it does not bother me," while another may say, "The sound is impossible, it is ruining my life." There is no evidence of harmful effects from the low levels of sound from wind turbines, as experienced by people in their homes. Studies have shown that peoples' attitudes toward wind turbines may affect the level of annoyance that they report (Pedersen et al., 2009).

Some authors emphasize the psychological effects of sounds (Kalveram, 2000; Kalveram et al., 1999). In an evaluation of 25 people exposed to five different wind turbine sounds at 40 dB, ratings of "annoyance" were different among different types of wind turbine noise (Persson Waye and Öhrström, 2002).

None of the psycho-acoustic parameters could explain the difference in annoyance responses. Another study of more than 2,000 people suggested that personality traits play a role in the perception of annoyance to environmental issues such as sound (Persson et al., 2007). Annoyance originates from acoustical signals that are not compatible with, or that disturb, psychological functions, in particular, disturbance of current activities. Kalveram et al. (1999) suggest that the main function of noise annoyance is as a warning that fitness may be affected but that it causes little or no physiological effect. Protracted annoyance, however, may undermine coping and progress to stress related effects. It appears that this is the main mechanism for effects on the health of a small number of people from prolonged exposure to low levels of noise.

The main health effect of noise stress is disturbed sleep, which may lead to other consequences. Work with low frequencies has shown that an audible low frequency sound does not normally become objectionable until it is 10 to 15 dB above hearing threshold (Inukai et al., 2000; Yamada, 1980). An exception is when a listener has developed hostility to the noise source, so that annoyance commences at a lower level.

There is no evidence that sound at the levels from wind turbines as heard in residences will cause direct physiological effects. A small number of sensitive people, however, may be stressed by the sound and suffer sleep disturbances.

4.1.3 Other Aspects of Annoyance

Some people have concluded that they have health problems caused directly by wind turbines. In order to make sense of these complaints, we must consider not only the sound, but the complex factors culminating in annoyance.

There is a large body of medical literature on stress and psychoacoustics. Three factors that may be pertinent to a short discussion of wind turbine annoyance effects are the nocebo effect, sensory integration dysfunction and somatoform disorders.

4.1.4 Nocebo Effect

The nocebo effect is an adverse outcome, a worsening of mental or physical health, based on fear or belief in adverse effects. This is the opposite of the well known placebo effect, where belief in positive effects of an intervention may produce positive results (Spiegel, 1997). Several factors appear to be associated with the nocebo phenomenon: expectations of adverse effects; conditioning from prior experiences; certain psychological characteristics such as anxiety, depression and the tendency to somatize (express psychological factors as physical symptoms; see below), and situational and contextual factors. A large range of reactions include hypervagotonia, manifested by idioventricular heart rhythm (a slow heart rate of 20 to 50 beats per minute resulting from an intrinsic pacemaker within the ventricles which takes over when normal sinoatrial node regulation is lost), drowsiness, nausea, fatigue, insomnia, headache, weakness, dizziness, gastrointestinal (GI) complaints and difficulty concentrating (Sadock and Sadock, 2005, p.2425). This array of symptoms is similar to the so-called "wind turbine syndrome" coined by Pierpont (2009, pre-publication draft). Yet these are all common symptoms in the general population and no evidence has been presented that such symptoms are more common in persons living near wind turbines. Nevertheless, the large volume of media coverage devoted to alleged adverse health effects of wind turbines understandably creates an anticipatory fear in some that they will experience adverse effects from wind turbines. Every person is suggestible to some degree. The resulting stress, fear, and hypervigilance may exacerbate or even create problems which would not otherwise exist. In this way, anti-wind farm activists may be creating with their publicity some of the problems that they describe.

4.1.5 Somatoform Disorders

There are seven somatoform disorders in the Fourth Edition of *Diagnostic and Statistical* Manual of Mental Disorders (DSM-IV-TR) (American Psychiatric Association, 2000). Somatoform disorders are physical symptoms which reflect psychological states rather than arising from physical causes. One common somatoform disorder, Conversion Disorder, is the unconscious expression of stress and anxiety as one or more physical symptoms (Escobar and Canino, 1989). Common conversion symptoms are sensations of tingling or discomfort, fatigue, poorly localized abdominal pain, headaches, back or neck pain, weakness, loss of balance, hearing and visual abnormalities. The symptoms are not feigned and must be present for at least six months according to DSM-IV-TR and two years according to the International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) (WHO, 1993). ICD-10 specifies the symptoms as belonging to four groups: (1) Gastrointestinal (abdominal pain, nausea, bloating/gas/, bad taste in mouth/excessive tongue coating, vomiting/regurgitation, frequent/loose bowel movements); (2) Cardiovascular (breathlessness without exertion, chest pains); (3) Genitourinary (frequency or dysuria, unpleasant genital sensations, vaginal discharge), and (4) Skin and Pain (blotchiness or discoloration of the skin, pain in the limbs, extremities or joints, paresthesias). ICD-10 specifies that at least six symptoms must be present in two or more groups.

One feature of somatoform disorders is *somatosensory amplification*, a process in which a person learns to feel body sensations more acutely and may misinterpret the significance of those sensations by equating them with illness (Barsky, 1979). *Sensory integration dysfunction*

describes abnormal sensitivity to any or all sensory stimuli (sound, touch, light, smell, and taste). There is controversy among researchers and clinicians as to whether sensory integration problems exist as an independent entity or as components of a pervasive developmental disorder (Sadock and Sadock, 2005, p. 3135), but their presence can lead to overestimation of the likelihood of being ill (Sadock and Sadock, 2005, p. 1803). Sensory integration dysfunction as such is not listed in the DSM-IV-TR or in the ICD-10.

Day-to-day stressors and adverse life events provide multiple stimuli to which people respond, and that response is often somatic due to catecholamines and activation of the autonomic nervous system. This stress response can become conditioned as memory. There is some evidence that poor coping mechanisms (anger impulsivity, hostility, isolation, lack of confiding in others) are linked to physiological reactivity, which is associated with somatic sensation and amplification (Sadock and Sadock, 2005, p. 1806).

In summary, the similarities of common human stress responses and conversion symptoms to those described as "wind turbine syndrome" are striking. An annoyance factor to wind turbine sounds undoubtedly exists, to which there is a great deal of individual variability. Stress has multiple causes and is additive. Associated stress from annoyance, exacerbated by the rhetoric, fears, and negative publicity generated by the wind turbine controversy, may contribute to the reported symptoms described by some people living near rural wind turbines.

4.2 Infrasound, Low-frequency Sound and Disease

Some reports have suggested a link between low frequency sound from wind turbines and certain adverse health effects. A careful review of these reports, however, leads a critical reviewer to question the validity of the claims for a number of reasons, most notably (1) the level of sound exposure associated with the putative health effects, (2) the lack of diagnostic specificity associated with the health effects reported, and (3) the lack of a control group in the analysis.

4.2.1 Vibroacoustic Disease

Vibroacoustic disease (VAD) in the context of exposure of aircraft engine technicians to sound was defined by Portuguese researchers as a whole-body, multi-system entity, caused by chronic exposure to large pressure amplitude and low frequency (LPALF) sound (Alves-Pereira and Castelo Branco, 2007a; Alves-Pereira and Castelo Branco, 2007b; Alves-Pereira and Castelo Branco, 2007c; Alves-Pereira and Castelo Branco, 2007d). VAD, the primary feature of which is thickening of cardiovascular structures, such as cardiac muscle and blood vessels, was first noted among airplane technicians, military pilots, and disc jockeys (Maschke, 2004; Castelo Branco, 1999). Workers had been exposed to high levels for more than 10 years. There are no epidemiological studies that have evaluated risk of VAD from exposure to infrasound. The likelihood of such a risk, however, is remote in light of the much lower vibration levels in the body itself. Studies of workers with substantially higher exposure levels have not indicated a risk of VAD. VAD has been described as leading from initial respiratory infections, through pericardial thickening to severe and life-threatening illness such as stroke, myocardial infarction, and risk of malignancy (Alves-Pereira and Castelo Branco, 2007a).

4.2.2 High-Frequency Exposure

All of the exposures of subjects for whom the VAD concept was developed, were dominated by higher frequency sounds, a critical point since the frequency range claimed for VAD-inducing sound is much wider than the frequency range of exposures experienced by the aircraft technicians who were diagnosed with VAD (Castelo Branco, 1999). Originally, proponents of the VAD concept had proposed a "greater than 90 dB" criterion for VAD. However, now some claim that VAD will result from exposure to almost any level of infrasound and low frequency sound at any frequency below 500 Hz. This assertion is an extraordinary extrapolation given that the concept of VAD developed from observations that a technician, working around military aircraft on the ground, with engines operating, displayed disorientation (Castelo Branco, 1999). Sound levels near aircraft were very high. In an evaluation of typical engine spectra of carrier based combat aircraft operating on the ground, the spectra peaked at frequencies above 100 Hz with sound levels from 120 to 135 dB close to the aircraft (Smith, 2002). The levels drop considerably, however, into the low frequency region.

There is an enormous decibel difference between the sound exposure of aircraft technicians and the sound exposure of people who live near wind turbines. Animal experiments indicated that exposure levels necessary to cause VAD were 13 weeks of continuous exposure to approximately 100 dB of low frequency sound (Mendes et al., 2007). The exposure levels were at least 50 to 60 dB higher than wind turbine levels in the same frequency region (Hayes, 2006a).

4.2.3 Residential Exposure: A Case Series

Extrapolation of results from sound levels greater than 90 dB and at predominantly higher frequencies (greater than 100 Hz) to a risk of VAD from inaudible wind turbine sound levels of 40 to 50 dB in the infrasound region, is a new hypothesis. One investigator, for example, has claimed that wind turbines in residential areas produce acoustical environments that can lead to the development of VAD in nearby home-dwellers (Alves-Pereira and Castelo Branco, 2007a).

This claim is based on comparison of only two infrasound exposures. The first is for a family which has experienced a range of health problems and which also complained of disturbances from low frequency sound. The second is for a family which lived near four wind turbines, about which they have become anxious (Alves-Pereira and Castelo Branco, 2007a; Alves-Pereira and Castelo Branco, 2007b).

The first family (Family F), was exposed to low levels of infrasound consisting of about 50 dB at 8 Hz and 10 Hz from a grain terminal about 3 kilometers (km) away and additional sources of low frequency sound, including a nearer railway line and road. The second family (Family R) lives in a rural area and was described as exposed to infrasound levels of about 55 dB to 60 dB at 8 Hz to 16 Hz. These exposures are well below the hearing threshold and not uncommon in urban areas. Neither the frequency nor volume of the sound exposures experienced by Families F or R are unusual. Exposure to infrasound (< 20 Hz) did not exceed 50 dB.

4.2.3.1 Family F—Exposure to Low Levels of Infrasound

Family F has a long history of poor health and a 10-year-old boy was diagnosed with VAD due to exposure to infrasound from the grain terminal (Alves-Pereira and Castelo Branco, 2007a; Castelo Branco et al., 2004). However, the infrasound levels are well below hearing threshold and are typical of urban infrasound, which occurs widely and to which many people are exposed.

According to the authors, the main effect of VAD was demonstrated by the 10-year-old boy in the family, as pericardial thickening.³ However, the boy has a history of poor health of unknown etiology (Castelo Branco et al., 2004). Castelo Branco (1999) has defined pericardial thickening as an indicator of VAD and assumes that the presence of pericardial thickening in the boy from Family F must be an effect of VAD, caused by exposure to the low-level, low frequency sound from the grain terminal. This assumption excludes other possible causes of pericardial thickening, including viral infection, tuberculosis, irradiation, hemodialysis, neoplasia with pericardial infiltration, bacterial, fungal, or parasitic infections, inflammation after myocardial infarction, asbestosis, and autoimmune diseases. The authors did not exclude these other possible causes of pericardial thickening.

4.2.3.2 Family R—Proximity to Turbines and Anxiety

Family R, living close to the wind turbines, has low frequency sound exposure similar to that of Family F. The family does not have symptoms of VAD, but it was claimed that "Family R. will also develop VAD should they choose to remain in their home." (Alves-Pereira and Castelo Branco, 2007b). In light of the absence of literature of cohort and case control studies, this bold statement seems to be unsubstantiated by available scientific literature.

4.2.4 Critique

It appears that Families F and R were self-selected complainants. Conclusions derived by Alves-Pereira and Castelo Branco (2007b) have been based only on the poor health and the sound exposure of Family F, using this single exposure as a measure of potential harmful effects for others. There has been no attempt at an epidemiological study.

Alves-Pereira and Castelo Branco claim that exposure at home is more significant than exposure at work because of the longer periods of exposure (Alves-Pereira and Castelo Branco, 2007e). Because an approximate 50 dB difference occurs between the exposure from wind turbines and the exposure that induced VAD (Hayes, 2006a), it will take 10⁵ years (100,000 years) for the wind turbine dose to equal that of one year of the higher level sound.

Among published scientific literature, this description of the two families is known as a case series, which are of virtually no value in understanding potential *causal associations* between exposure to a potential hazard (i.e., low frequency sound) and a potential health effect (i.e., vibroacoustic disease). Case reports have value but primarily in generating hypotheses to test in other studies such as large groups of people or in case control studies. The latter type of study can systematically evaluate people with pericardial thickening who live near wind turbines in comparison to people with pericardial thickening who do not live

³ Pericardial thickening is unusual thickening of the protective sac (pericardium) which surrounds the heart. For example, see http://www.emedicine.com/radio/topic191.htm.

near wind turbines. Case reports need to be confirmed in larger studies, most notably cohort studies and case-control studies, before definitive cause and effect assertions can be drawn. The reports of the two families do not provide persuasive scientific evidence of a link between wind turbine sound and pericardial thickening.

Wind turbines produce low levels of infrasound and low frequency sound, yet there is no credible scientific evidence that these levels are harmful. If the human body is affected by low, sub-threshold sound levels, a unique and not yet discovered receptor mechanism of extraordinary sensitivity to sound is necessary—a mechanism which can distinguish between the normal, relatively high-level "sound" inherent in the human body⁴ and excitation by external, low-level sound. Essential epidemiological studies of the potential effects of exposure at low sound levels at low frequencies have not been conducted. Until the fuzziness is clarified, and a receptor mechanism revealed, no reliance can be placed on the case reports that the low levels of infrasound and low frequency sound are a cause of vibroacoustic disease.⁵

The attribution of dangerous properties to low levels of infrasound continues unproven, as it has been for the past 40 years. No foundation has been demonstrated for the new hypothesis that exposure to sub-threshold, low levels of infrasound will lead to vibroacoustic disease. Indeed, human evolution has occurred in the presence of natural infrasound.

4.3 Wind Turbine Syndrome

"Wind turbine syndrome" as promoted by Pierpont (2009, pre-publication draft) appears to be based on the following two hypotheses:

- 1. Low levels of airborne infrasound from wind turbines, at 1 to 2 Hz, directly affect the vestibular system.
- 2. Low levels of airborne infrasound from wind turbines at 4 to 8 Hz enter the lungs via the mouth and then vibrate the diaphragm, which transmits vibration to the viscera, or internal organs of the body.

The combined effect of these infrasound frequencies sends confusing information to the position and motion detectors of the body, which in turn leads to a range of disturbing symptoms.

4.3.1 Evaluation of Infrasound on the Vestibular System

Consider the first hypothesis. The support for this hypothesis is a report apparently misunderstood to mean that the vestibular system is more sensitive than the cochlea to low levels of both sound and vibration (Todd et al., 2008a). The Todd report is concerned with vibration input to the mastoid area of the skull, and the corresponding detection of these vibrations by the cochlea and vestibular system. The lowest frequency used was 100 Hz,

⁴ Body sounds are often used for diagnosis. For example see Gross, V., A. Dittmar, T. Penzel, F., Schüttler, and P. von Wichert.. (2000): "The Relationship between Normal Lung Sounds, Age, and Gender." *American Journal of Respiratory and Critical Care Medicine*. Volume 162, Number 3: 905 - 909.

⁵ This statement should not be interpreted as a criticism of the work of the VAD Group with aircraft technicians at high noise levels

considerably higher than the upper limit of the infrasound frequency (20 Hz). The report does not address air-conducted sound or infrasound, which according to Pierpont excites the vestibular system by airborne sound and by skull vibration. This source does not support Pierpont's hypothesis and does not demonstrate the points that she is trying to make.

There is no credible scientific evidence that low levels of wind turbine sound at 1 to 2 Hz will directly affect the vestibular system. In fact, it is likely that the sound will be lost in the natural infrasonic background sound of the body. The second hypothesis is equally unsupported with appropriate scientific investigations. The body is a noisy system at low frequencies. In addition to the beating heart at a frequency of 1 to 2 Hz, the body emits sounds from blood circulation, bowels, stomach, muscle contraction, and other internal sources. Body sounds can be detected externally to the body by the stethoscope.

4.3.2 Evaluation of Infrasound on Internal organs

It is well known that one source of sound may mask the effect of another similar source. If an external sound is detected within the body in the presence of internally generated sounds, the external sound must produce a greater effect in the body than the internal sounds. The skin is very reflective at higher frequencies, although the reflectivity reduces at lower frequencies (Katz, 2000). Investigations at very low frequencies show a reduction of about 30 dB from external to internal sound in the body of a sheep (Peters et al., 1993). These results suggest an attenuation (reduction) of low frequency sound by the body before the low frequency sound reaches the internal organs.

Low-level sounds from outside the body do not cause a high enough excitation within the body to exceed the internal body sounds. Pierpont refers to papers from Takahashi and colleagues on vibration excitation of the head by high levels of external sound (over 100 dB). However, these papers state that response of the head at frequencies below 20 Hz was not measurable due to the masking effect of internal body vibration (Takahashi et al., 2005; Takahashi et al., 1999). When measuring chest resonant vibration caused by external sounds, the internal vibration masks resonance for external sounds below 80 dB excitation level (Leventhall, 2006). Thus, the second hypothesis also fails.

To recruit subjects for her study, Pierpont sent out a general call for anybody believing their health had been adversely affected by wind turbines. She asked respondents to contact her for a telephone interview. The case series results for ten families (37 subjects) are presented in Pierpont (2009, pre-publication draft). Symptoms included sleep disturbance, headache, tinnitus, ear pressure, vertigo, nausea, visual blurring, tachycardia, irritability, concentration, memory, panic attacks, internal pulsation, and quivering. This type of study is known as a case series. A case series is of limited, if any, value in evaluating causal connections between an environmental exposure (in this case, sound) and a designated health effect (so called "wind turbine syndrome"). This particular case series is substantially limited by selection bias, in which people who already think that they have been affected by wind turbines "self select" to participate in the case series. This approach introduces a significant bias in the results, especially in the absence of a control group who do not live in proximity of a wind turbine. The results of this case series are at best hypothesis-generating activities that do not provide support for a causal link between wind turbine sound and so-called "wind turbine syndrome."

However, these so called "wind turbine syndrome" symptoms are not new and have been published previously in the context of "annoyance" to environmental sounds (Nagai et al., 1989; Møller and Lydolf, 2002; Mirowska and Mroz, 2000). The following symptoms are based on the experience of noise sufferers extending over a number of years: distraction, dizziness, eye strain, fatigue, feeling vibration, headache, insomnia, muscle spasm, nausea, nose bleeds, palpitations, pressure in the ears or head, skin burns, stress, and tension (Leventhall, 2002).

The symptoms are common in cases of extreme and persistent annoyance, leading to stress responses in the affected individual and may also result from severe tinnitus, when there is no external sound. The symptoms are exhibited by a small proportion of sensitive persons and may be alleviated by a course of psychotherapy, aimed at desensitization from the sound (Leventhall et al., 2008). The similarity between the symptoms of noise annoyance and those of "wind turbine syndrome" indicates that this "diagnosis" is not a pathophysiological effect, but is an example of the well-known stress effects of exposure to noise, as displayed by a small proportion of the population. These effects are familiar to environmental noise control officers and other "on the ground" professionals.

"Wind turbine syndrome," not a recognized medical diagnosis, is essentially reflective of symptoms associated with noise annoyance and is an unnecessary and confusing addition to the vocabulary on noise. This syndrome is not a recognized diagnosis in the medical community. There are no unique symptoms or combinations of symptoms that would lead to a specific pattern of this hypothesized disorder. The collective symptoms in some people exposed to wind turbines are more likely associated with annoyance to low sound levels.

4.4 Visceral Vibratory Vestibular Disturbance

4.4.1 Hypothesis

In addition to case reports of symptoms reported by people who live near wind turbines, Pierpont has proposed a hypothesis that purports to explain how some of these symptoms arise: visceral vibratory vestibular disturbance (VVVD) (Pierpont, 2009, pre-publication draft). VVVD has been described as consisting of vibration associated with low frequencies that enters the body and causes a myriad of symptoms. Pierpont considers VVVD to be the most distinctive feature of a nonspecific set of symptoms that she describes as "wind turbine syndrome." As the name VVVD implies, wind turbine sound in the 4 to 8 Hz spectral region is hypothesized to cause vibrations in abdominal viscera (e.g., intestines, liver, and kidneys) that in turn send neural signals to the part of the brain that normally receives information from the vestibular labyrinth. These signals hypothetically conflict with signals from the vestibular labyrinth and other sensory inputs (visual, proprioceptive), leading to unpleasant symptoms, including panic. Unpleasant symptoms (especially nausea) can certainly be caused by sensory conflict; this is how scientists explain motion sickness. However, this hypothesis of VVVD is implausible based on knowledge of sensory systems and the energy needed to stimulate them. Whether implausible or not, there are time-tested scientific methods available to evaluate the legitimacy of any hypothesis and at this stage, VVVD as proposed by Pierpont is an untested hypothesis. A case series of 10 families recruited to participate in a study based on certain symptoms would not be considered evidence of causality by research or policy institutions such as the International Agency for Research on

Cancer (IARC) or EPA. As noted earlier in this report, a case series of self-selected patients does not constitute evidence of a causal connection.

4.4.2 Critique

Receptors capable of sensing vibration are located predominantly in the skin and joints. A clinical neurological examination normally includes assessment of vibration sensitivity. It is highly unlikely, however, that airborne sound at comfortable levels could stimulate these receptors, because most of airborne sound energy is reflected away from the body. Takahashi et al. (2005) used airborne sound to produce chest or abdominal vibration that exceeded ambient body levels. This vibration may or may not have been detectable by the subjects. Takahashi found that levels of 100 dB sound pressure level were required at 20 to 50 Hz (even higher levels would have been required at lower and higher frequencies). Sounds like this would be considered by most people to be very loud, and are well beyond the levels produced by wind turbines at residential distances. Comparison of the responses to low frequency airborne sound by normal hearing and profoundly deaf persons has shown that deaf subjects can detect sound transmitted through their body only when it is well above the normal hearing threshold (Yamada et al., 1983). For example, at 16 Hz, the deaf persons' average threshold was 128 dB sound pressure level, 40 dB higher than that of the hearing subjects. It has also been shown that, at higher frequencies, the body surface is very reflective of sound (Katz, 2000). Similarly, work on transmission of low frequency sound into the bodies of sheep has shown a loss of about 30 dB (Peters et al., 1993)

The visceral receptors invoked as a mechanism for VVVD have been shown to respond to static gravitational position changes, but not to vibration (that is why they are called graviceptors). If there were vibration-sensitive receptors in the abdominal viscera, they would be constantly barraged by low frequency body sounds such as pulsatile blood flow and bowel sounds, while external sounds would be attenuated by both the impedance mismatch and dissipation of energy in the overlying tissues. Finally, wind turbine sound at realistic distances possesses little, if any, acoustic energy, at 4 to 8 Hz.

It has been hypothesized that the vestibular labyrinth may be "abnormally stimulated" by wind turbine sound (Pierpont, 2009, pre-publication draft). As noted in earlier sections of this report, moderately loud airborne sound, at frequencies up to about 500 Hz, can indeed stimulate not only the cochlea (the hearing organ) but also the otolith organs. This is not abnormal, and there is no evidence in the medical literature that it is in any way unpleasant or harmful. In ordinary life, most of us are exposed for hours every day to sounds louder than those experienced at realistic distances from wind turbines, with no adverse effects. This assertion that the vestibular labyrinth is stimulated at levels below hearing threshold is based on a misunderstanding of research that used bone-conducted vibration rather than airborne sound. Indeed, those who wear bone conduction hearing aids experience constant stimulation of their vestibular systems, in addition to the cochlea, without adverse effects.

4.5 Interpreting Studies and Reports

In light of the unproven hypotheses that have been introduced as reflective of adverse health effects attributed to wind turbines, it can be instructive to review the type of research studies that can be used to determine definitive links between exposure to an environmental hazard (in this case, sound and vibration emissions from wind turbines) and adverse health effects (the so-called "wind turbine syndrome").

How do we know, for example, that cigarettes cause lung cancer and that excessive noise causes hearing loss? Almost always, the first indication that an exposure might be harmful comes from the informal observations of doctors who notice a possible correlation between an exposure and a disease, then communicate their findings to colleagues in case reports, or reports of groups of cases (*case series*). These initial observations are usually uncontrolled; that is, there is no comparison of the people who have both exposure and disease to control groups of people who are either non-exposed or disease-free. There is usually no way to be sure that the apparent association is statistically significant (as opposed to simple coincidence), or that there is a causal relationship between the exposure and the disease in question, without control subjects. For these reasons, case reports and case series cannot prove that an exposure is really harmful, but can only help to develop hypotheses that can then be tested in controlled studies (Levine et al., 1994; Genovese, 2004; McLaughlin, 2003).

Once suspicion of harm has been raised, controlled studies (case-control or cohort) are essential to determine whether or not a causal association is likely, and only after multiple independent-controlled studies show consistent results is the association likely to be broadly accepted (IARC, 2006).

Case-control studies compare people with the disease to people without the disease (ensuring as far as possible that the two groups are well-matched with respect to all other variables that might affect the chance of having the disease, such as age, sex, and other exposures known to cause the disease). If the disease group is found to be much more likely to have had the exposure in question, and if multiple types of error and bias can be excluded (Genovese, 2004), a causal link is likely. Multiple case-control studies were necessary before the link between smoking and lung cancer could be proved.

Cohort studies compare people with the exposure to well-matched control subjects who have not had that exposure. If the exposed group proves to be much more likely to have the disease, assuming error and bias can be excluded, a causal link is likely. After multiple cohort studies, it was clear that excessive noise exposure caused hearing loss (McCunney and Meyer, 2007).

In the case of wind turbine noise and its hypothetical relationships to "wind turbine syndrome" and vibroacoustic disease, the weakest type of evidence—case series—is available, from only a single investigator. These reports can do no more than suggest hypotheses for further research. Nevertheless, if additional and independent investigators begin to report adverse health effects in people exposed to wind turbine noise, in excess of those found in unexposed groups, and if some consistent syndrome or set of symptoms emerges, this advice could change. Thus, at this time, "wind turbine syndrome" and VVVD are unproven hypotheses (essentially unproven ideas) that have not been confirmed by appropriate research studies, most notably cohort and case control studies. However, the weakness of the basic hypotheses makes such studies unlikely to proceed.

4.6 Standards for Siting Wind Turbines

4.6.1 Introduction

While the use of large industrial-scale wind turbines is well established in Europe, the development of comparable wind energy facilities in North America is a more recent occurrence. The growth of wind and other renewable energy sources is expected to continue. Opponents of wind energy development argue that the height and setback regulations established in some jurisdictions are too lenient and that the noise limits which are applied to other sources of noise (either industrial or transportation) are not sufficient for wind turbines for a variety of reasons. Therefore, they are concerned that the health and well-being of some residents who live in the vicinity (or close proximity to) of these facilities is threatened. Critics maintain that wind turbine noise may present more than an annoyance to nearby residents especially at night when ambient levels may be low. Consequently, there are those who advocate for a revision of the existing regulations for noise and setback pertaining to the siting of wind installations (Kamperman and James, 2009). Some have indicated their belief that setbacks of more than 1 mile may be necessary. While the primary purpose of this study was to evaluate the potential for adverse health effects rather than develop public policy, the panel does not find that setbacks of 1 mile are warranted.

4.6.2 Noise Regulations and Ordinances

In 1974, EPA published a report that examined the levels of environmental noise necessary to protect public health and welfare (EPA, 1974). Based on the analysis of available scientific data, EPA specified a range of day-night sound levels necessary to protect the public health and welfare from the effects of environmental noise, with a reasonable margin of safety. Rather than establishing standards or regulations, however, EPA simply identified noise levels below which the general public would not be placed at risk from any of the identified effects of noise. Each federal agency has developed its own noise criteria for sources for which they have jurisdiction (i.e., the Federal Aviation Administration regulates aircraft and airport noise, the Federal Highway Administration regulates highway noise, and the Federal Energy Regulatory Commission regulates interstate pipelines (Bastasch, 2005). State and local governments were provided guidance by EPA on how to develop their own noise regulations, but the establishment of appropriate limits was left to local authorities to determine given each community's differing values and land use priorities (EPA, 1975).

4.6.3 Wind Turbine Siting Guidelines

Establishing appropriate noise limits and setback distances for wind turbines has been a concern of many who are interested in wind energy. There are several approaches to regulating noise, from any source, including wind turbines. They can generally be classified as absolute or relative standards or a combination of absolute and relative standards. Absolute standards establish a fixed limit irrespective of existing noise levels. For wind turbines, a single absolute limit may be established regardless of wind speed (i.e., 50 dBA) or different limits may be established for various wind speeds (i.e., 40 dBA at 5 meters per second [m/s] and 45 dBA at 8 m/s). The Ontario Ministry of Environment (2008) wind turbine noise guidelines is an example of fixed limits for each integer wind speed between 4 and 10 meters per second. Relative standards limit the increase over existing levels and may

also establish either an absolute floor or ceiling beyond which the relative increase is not considered. That is, for example, if a relative increase of 10 dBA with a ceiling of 50 dBA is allowed and the existing level is 45 dBA, a level of 55 dBA would not be allowed. Similarly, if a floor of 40 dBA was established and the existing level is 25 dBA, 40 dBA rather than 35 dBA would be allowed. Fixed distance setbacks have also been discussed. Critics of this approach suggest that fixed setbacks do not take into account the number or size of the turbines nor do they consider other potential sources of noise within the project area. It is clear that like many other sources of noise, a uniform regulator approach for wind turbine noise has not been established either domestically or internationally.

A draft report titled *Environmental Noise and Health in the UK*, published for comment in 2009 by the Health Protection Agency (HPA) on behalf of an ad hoc expert group, provides insightful comments on the World Health Organization's noise guidelines (WHO, 1999). The HPA draft report can be viewed at the following address:

http://www.hpa.org.uk/web/HPAwebFile/HPAweb C/1246433634856

The HPA report states the following:

It is important to bear in mind that the WHO guideline values, like other WHO guidelines, are offered to policymakers as a contribution to policy development. They are not intended as standards in a formal sense but as a possible basis for the development of standards. By way of overall summary, the 1998 NPL report noted [a British report titled Health-Based Noise Assessment Methods – A Review and Feasibility Study (Porter et al., 1998) as quoted in HPA 2009]:

The WHO guidelines represent a consensus view of international expert opinion on the lowest noise levels below which the occurrence rates of particular effects can be assumed to be negligible. Exceedances of the WHO guideline values do not necessarily imply significant noise impact and indeed, it may be that significant impacts do not occur until much higher degrees of noise exposure are reached. The guidelines form a starting point for policy development. However, it will clearly be important to consider the costs and benefits of reducing noise levels and, as in other areas, this should inform the setting of objectives.

(From: HPA, 2009, p. 77)

The HPA report further states the following:

Surveys have shown that about half of the UK population lives in areas where daytime sound levels exceed those recommended in the WHO Community Noise Guidelines. About two-thirds of the population live in areas where the night-time guidelines recommended by WHO are exceeded. (p. 81)

That sleep can be affected by noise is common knowledge. Defining a dose-response curve that describes the relationship between exposure to noise and sleep disturbance has, however, proved surprisingly difficult. Laboratory studies and field studies have generated different results. In part this is due to habituation to noise which, in the field, is common in many people. (p. 82)

Our examination of the evidence relating to the effects of environmental noise on health has demonstrated that this is a rapidly developing area. Any single report will, therefore, need to be revised within a few years. We conclude and recommend that an

independent expert committee to address these issues on a long-term basis be established. (p. 82)

The statements cited above from the HPA and WHO documents address general environmental noise concerns rather than concerns focused solely on wind turbine noise.

SECTION 5

Conclusions

Many countries have turned to wind energy as a key strategy to generate power in an environmentally clean manner. Wind energy enjoys considerable public support, but it has its detractors, who have publicized their concerns that the sounds emitted from wind turbines cause adverse health consequences.

The objective of the panel was to develop an authoritative reference document for the use of legislators, regulators, and citizens simply wanting to make sense of the conflicting information about wind turbine sound. To this end, the panel undertook extensive review, analysis, and discussion of the peer-reviewed literature on wind turbine sound and possible health effects. The varied professional backgrounds of panel members (audiology, acoustics, otolaryngology, occupational and environmental medicine, and public health) were highly advantageous in creating a diversity of informed perspectives. Participants were able to examine issues surrounding health effects and discuss plausible biological effects with considerable combined expertise.

Following review, analysis, and discussion, the panel reached agreement on three key points:

- There is nothing unique about the sounds and vibrations emitted by wind turbines.
- The body of accumulated knowledge about sound and health is substantial.
- The body of accumulated knowledge provides no evidence that the audible or subaudible sounds emitted by wind turbines have any direct adverse physiological effects.

The panel appreciated the complexities involved in the varied human reactions to sound, particularly sounds that modulate in intensity or frequency. Most complaints about wind turbine sound relate to the aerodynamic sound component (the swish sound) produced by the turbine blades. The sound levels are similar to the ambient noise levels in urban environments. A small minority of those exposed report annoyance and stress associated with noise perception.

This report summarizes a number of physical and psychological variables that may influence adverse reactions. In particular, the panel considered "wind turbine syndrome" and vibroacoustic disease, which have been claimed as causes of adverse health effects. The evidence indicates that "wind turbine syndrome" is based on misinterpretation of physiologic data and that the features of the so-called syndrome are merely a subset of annoyance reactions. The evidence for vibroacoustic disease (tissue inflammation and fibrosis associated with sound exposure) is extremely dubious at levels of sound associated with wind turbines.

The panel also considered the quality of epidemiologic evidence required to prove harm. In epidemiology, initial case reports and uncontrolled observations of disease associations

5-1

need to be confirmed through controlled studies with case-control or cohort methodology before they can be accepted as reflective of casual connections between wind turbine sound and health effects. In the area of wind turbine health effects, no case-control or cohort studies have been conducted as of this date. Accordingly, allegations of adverse health effects from wind turbines are as yet unproven. Panel members agree that the number and uncontrolled nature of existing case reports of adverse health effects alleged to be associated with wind turbines are insufficient to advocate for funding further studies.

In conclusion:

- 1. Sound from wind turbines does not pose a risk of hearing loss or any other adverse health effect in humans.
- 2. Subaudible, low frequency sound and infrasound from wind turbines do not present a risk to human health.
- 3. Some people may be annoyed at the presence of sound from wind turbines. Annoyance is not a pathological entity.
- 4. A major cause of concern about wind turbine sound is its fluctuating nature. Some may find this sound annoying, a reaction that depends primarily on personal characteristics as opposed to the intensity of the sound level.

References

- Alves-Pereira, M., and N.A.A. Castelo Branco. 2007a. Public Health and Noise Exposure: The Importance of Low Frequency Noise. *Proceedings of the Inter-Noise* 2007 *Conference*. Istanbul: Sponsored by the International Institute of Noise Control Engineering (I-INCE) and Organized by the Turkish Acoustical Society. August 28-31, 2007.
- Alves-Pereira, M., and N.A.A. Castelo Branco. 2007b. In-Home Wind Turbine Noise is Conducive to Vibroacoustic Disease. *Proceedings of the Second International Meeting on Wind Turbine Noise*. Lyon, France: September 20-21, 2007. INCE/Europe.
- Alves-Pereira, M., and N.A.A. Castelo Branco. 2007c. The Scientific Arguments Against Vibroacoustic Disease. *Proceedings of the Inter-Noise* 2007 *Conference*. Istanbul: Sponsored by the International Institute of Noise Control Engineering (I-INCE) and Organized by the Turkish Acoustical Society. August 28-31, 2007.
- Alves-Pereira, M., and N.A.A. Castelo Branco. 2007d. Infrasound and Low Frequency Noise Dose Responses: Contributions. *Proceedings of the Inter-Noise 2007 Conference*. Istanbul: Sponsored by the International Institute of Noise Control Engineering (I-INCE) and Organized by the Turkish Acoustical Society. August 28-31, 2007.
- Alves-Pereira, M., and N.A.A. Castelo Branco. 2007e. Infrasound and low frequency noise dose responses: Contributions. *Proceedings of the Inter-Noise 2007 Conference*, CDRom. Istanbul: Sponsored by the International Institute of Noise Control Engineering (I-INCE) and Organized by the Turkish Acoustical Society. August 28-31, 2007.
- American National Standards Institute (ANSI). 2006. *Guide for the Measurement and Evaluation of Human Exposure to Vibration Transmitted to the Hand,* ANSI S2.70-2006. New York: Acoustical Society of America.
- American National Standards Institute (ANSI). 1979. *Guide for the Evaluation of Human Exposure to Whole-Body Vibration*, ANSI S3.18-1979. New York: Acoustical Society of America.
- American Psychiatric Association. 2000. *Diagnostic and Statistical Manual of Mental Disorders*, 4th Ed. Text rev. Washington DC.
- Babisch, W. 2004. Health Aspects of Extra-Aural Noise Research. Noise & Health 6(22): 69-81.
- Babisch, W. 2000. Traffic Noise and Cardiovascular Disease: Epidemiological Review and Synthesis. *Noise & Health* 2(8): 9–32.
- Babisch, W. 1998. Epidemiological Studies of the Cardiovascular Effects of Occupational Noise A Critical Appraisal. *Noise & Health* 1(1): 24 39.
- Baloh, R.W. and V. Honrubia. 1979. *Clinical Neurophysiology of the Vestibular System*. Philadelphia, Pennsylvania: F. A. Davis Company.

6-1

- Barsky, A.J. 1979. Patients who amplify body symptoms. Annals of Internal Medicine 91: 63.
- Bastasch, M. 2005. Regulation of Wind Turbine Noise in the Western U.S. *Proceedings of the 1st International Conference on Wind Turbine Noise: Perspectives for Control.* Berlin. October 17-18, 2005. INCE/Europe.
- Berglund, B., P. Hassmen, and R. F. Job. 1996. Sources and effects of low frequency noise. *Journal of the Acoustical Society of America* 99: 2985-3002
- Berglund, B. and T. Lindvall. 1995. Community Noise. *Archives of the Centre for Sensory Research, Karolinska Institute, Stockholm University Vol* 2, *Issue* 1.
- Brooks, Thomas F., D. Stuart Pope, and Michael A. Marcolini. 1989. Airfoil self-noise and prediction. L-16528; NAS 1.61:1218; NASA-RP-1218. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890016302_1989016302.pdf
- Bradley, J. S. 1994. Annoyance Caused by Constant Amplitude and Amplitude Modulated Sounds Containing Rumble. *Noise Control Engineering Journal* 42: 203-208.
- Castelo Branco, N.A.A. 1999. The Clinical Stages of Vibroacoustic Disease. *Aviation, Space and Environmental Medicine* 70 (3 II Suppl.): A32-A39.
- Castelo Branco, N.A.A., A. Araujo, J. Jonaz de Melo, and M. Alves-Pereira. 2004. Vibroacoustic Disease in a Ten Year Old Male. *Proceedings of the Inter-Noise 2004 Conference.* Prague: Czech Acoustical Society and the International Institute of Noise Control Engineering
- Escobar, J, and G. Canino. 1989. Unexplained physical complaints: Psychopathology and epidemiological correlates. *British Journal of Psychiatry* 154 [Suppl 4]: 24.
- Fernandez, C., and J.M. Goldberg. 1976. Physiology of Peripheral Neurons Innervating Otolith Organs of the Squirrel Monkey. III: Response dynamics. *Journal of Neurophysiology* 39: 996.
- Fiz, J. A., J. Gnitecki, S.S. Kraman, H. Pasterkamp and G.R. Wodicka. 2008. Effect of Body Position on Lung Sounds in Healthy Young Men. *Chest* 133 (3): 729-736.
- Genovese E. 2004. Evidence-based medicine: What does it mean? Why do we care? In Occupational Medicine Practice Guidelines, ed Glass LS, American College of Occupational and Environmental Medicine, OEM Press, Beverly Farms, MA.
- Global Wind Energy Council. 2009. Global Wind 2008 Report.

 http://www.gwec.net/fileadmin/documents/Publications/Global%20Wind%2020
 <a href="http://www.gwec.net/fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/documents/Fileadmin/docu
- Gross, V., A. Dittmar, T. Penzel, F. Schüttler, and P. von Wichert. 2000. The Relationship Between Normal Lung Sounds, Age, and Gender. *American Journal of Respiratory and Critical Care Medicine*. 162 (3): 905 909.
- Hayes, M. 2006a. Low Frequency and Infrasound Noise Emissions from Wind Farms and the Potential for Vibroacoustic Disease. *Proceedings of the 12th International Meeting on Low Frequency Noise and Vibration and Its Control.* Bristol: Journal of Low Frequency Noise, Vibration and its Control, INCE/Europe, and EAA.

- Hayes, M. 2006b. The Measurement of Low Frequency Noise at Three UK Wind Farms. URN No.: 06/1412
 - http://webarchive.nationalarchives.gov.uk/+/http://www.berr.gov.uk//whatwedo/energy/sources/renewables/explained/wind/onshoreoffshore/page31267.html.
- Health Protection Agency (HPA). 2009. *Environmental Noise and Health in the UK*. Dr. Andy Moorhouse, Ed. http://www.hpa.org.uk/web/HPAwebFile/HPAweb_C/1246433634856.
- IEC. 1994. 60050-801:1994 International Electrotechnical Vocabulary Chapter 801: Acoustics and electroacoustics.
- International Agency for Research on Cancer. 2006. IARC monographs on the evaluation of carcinogenic risk to humans: Preamble. World Health Organization, International Agency for Research on Cancer: Lyon, France.
- Inukai, Y., N. Nakamura, and H. Taya. 2000. Unpleasantness and Acceptable Limits of Low Frequency Sound. *Journal of Low-frequency Noise and Vibration* 19: 135-140.
- Ising, H. and B. Kruppa. 2004. Health Effects Caused by Noise: Evidence in the Literature from the Past 25 Years. *Noise and Health* 6 (23): 5-13.
- International Standards Organization (ISO). 2003. ISO 226. Acoustics Normal equal-loudness contours.
- Jakobsen, J. 2004. Infrasound Emission from Wind Turbines. *Proceedings of the 11th International Meeting on Low Frequency Noise and Vibration and its Control.* Maastricht: MultiScience Publishing Company.
- Kalveram, K. T. 2000. How Acoustical Noise Can Cause Physiological and Psychological Reactions. *Proceedings of the 5th International Symposium of Transport Noise and Vibration*. St. Petersburg, Russia: East European Acoustical Society.
- Kalveram, K Th, Dassow, J & Vogt, J (1999) How information about the source influences noise annoyance. *Proceedings of the 137th meeting of the Acoustical Society of America*. Seattle, Washington: Acoustical Society of America.
- Kamperman G.W. and R. R. James. 2009. Guidelines for selecting wind turbine sites. *Sound and Vibration*: 8-12. July. http://www.sandv.com/home.htm.
- Kamperman, G. W. and R. R. James. 2008. Simple Guidelines for Siting Wind Turbines to Prevent Health Risks. *Proceedings NoiseCon 2008*. Dearborn, Michigan: Institute of Noise Control Engineering.
- Katz, B. 2000. Acoustic Absorption Coefficient of Human Hair and Skin within the Audible Frequency Range. *JASA* 108. pp. 2238-2242.
- Kryter K.D. 1980. Physiological Acoustics and Health. *Journal of the Acoustical Society of America* 68: 10–14.

- Kurakata, K., and T. Mizunami. 2008. The statistical distribution of normal hearing thresholds for low frequency tones. *Journal of Low Frequency Noise, Vibration and Active Control* 27: 97-104.
- Leventhall, H.G. 2006. Somatic Responses to Low Frequency Noise. *Proceedings of the 12th International Meeting: Low Frequency Noise and Vibration and its Control.* Bristol: Journal of Low Frequency Noise, Vibration and its Control, INCE/Europe, and EAA.
- Leventhall, H.G. 2004. Low Frequency Noise and Annoyance. Noise and Health 6 923: 59-72.
- Leventhall, H.G. 2002. 35 Years of Low Frequency Noise—Stephens Medal Lecture. *Proceedings of Institue of Acoustics*. Stratford, UK: Institute of Acoustics.
- Leventhall, H. G., S. Benton, and P. Pelmear. 2003. *A Review of Published Research on Low Frequency Noise and its Effects*. http://www.defra.gov.uk/environment/noise/research/lowfrequency/pdf/lowfrequoise.pdf. Accessed 2003.
- Leventhall, H. G., S. Benton, and D. Robertson. 2008. Coping Strategies for Low Frequency Noise. *Journal of Low Frequency Noise and Vibration* 27: 35-52.
- Levine M, Walter S, Lee H, Haines T, Holbrook Am Moyer V. 1994. How to use an article about harm. *Journal of the American Medical Association* 271: 1615-1619.
- Maschke C. 2004. Introduction to the special issue of low frequency noise. *Noise and Health* 6: 1-2.
- McCunney, R.J. and J. Meyer. 2007. Occupational Exposure to Noise. *Environmental and Occupational Medicine*, 4th Edition. W. M. Rom, ed. Baltimore: Lippincott Williams and Wilkins. pp. 1295-1238.
- McLaughlin J.K. 2003. Epidemiology and Biostatistics. McCunney R.J. (ed) *A Practical Approach to Occupational and Environmental Medicine*. Baltimore.
- Mendes, J., J. Martins dos Santos, P. Oliveira, J. da Fonseca, A. Aguas, and N.A.A. Castelo Branco. 2007. Low frequency noise effects on the periodontium of the Wistar rat a light microscopy study. *European Journal of Anatomy* 11 (1): 27-30
- Mirowska, M., and E. Mroz. 2000. Effect of low frequency noise at low levels on human health in light of questionnaire investigation. *Proceedings of the Inter-Noise* 2000 *Conference.* 5: 2809 2812.
- Mittelstaedt, H. 1996. Somatic graviception. *Biological Psychology* 42: 53-74.
- Møller, H., and M. Lydolf. 2002. A questionnaire survey of complaints of infrasound and low frequency noise. *Journal of Low Frequency Noise and Vibration* 21: 53-65.
- Moorhouse, A., M. Hayes, S. von Hunerbein, B. Piper, and M. Adams. 2007. Research into Aerodynamic Modulation of Wind Turbine Noise. *Report: Department of Business Enterprise and Regulatory Reform.* www.berr.gov.uk/files/file40570.pdf.
- Nagai, N., M. Matsumoto, Y. Yamsumi, T. Shiraishi, K. Nishimura, K. Matsumoto, K. Myashita, and S. Takeda. 1989. Process and emergence of the effects of infrasonic

- and low frequency noise on inhabitants. *Journal of Low Frequency Noise and Vibration* 8: 87-89.
- National Institute for Occupational Safety and Health (NIOSH). 1998. Criteria for a Recommended Standard: Occupational Noise Exposure. NIOSH, Cincinnati OH.
- National Research Council (NRC). 2007. Environmental Impacts of Wind-Energy Projects NRC, Washington, DC.
- National Toxicology Program (NTP). National Institute of Environmental Health Sciences (NIESH). 2001. Infrasound: brief review of the toxicological literature. Prepared in part by Integrated Laboratory systems (NIEHS contract N01-E3 -65402 (Haneke K.E. and B.C. Carson, authors).
- New York Department of Environmental Conservation. 2001. Assessing and Mitigating Noise Impacts. Available at http://www.dec.ny.gov/docs/permits_ej_operations_pdf/noise2000.pdf.
- Occupational Safety and Health Administration (OSHA). 1983. Occupational Noise Exposure: Hearing Conservation Amendment; Final Rule. Federal Register 48 (46): 9738-9784.
- Oerlemans, S. and G. Schepers. 2009. Prediction of wind turbine noise directivity and swish. *Proceedings of the 3rd International Conference on Wind Turbine Noise*. Aalborg, Denmark. June 17-19, 2009. INCE/Europe.
- Ontario Ministry of Environment. 2008. Noise Guidelines for Wind Farms. Interpretation for Applying MOE NPC Publications to Wind Power Generation Facilities. http://www.ene.gov.on.ca/publications/4709e.pdf
- Pearsons K.S., R.L. Bennett, and S. Fidell. 1977. Speech levels in various noise environments. Report No. EPA-600/1-77-025. Washington DC, Environmental Protection Agency, 1977.
- Pedersen, E., R. Bakker, J. Bouma, and F. van den Berg. 2009. Response to noise from modern wind farms in The Netherlands. *Journal of the Acoustical Society of America* August 126: 634-643
- Pedersen, and H. Högskolan. 2003. *Noise Annoyance from Wind Turbines*. Report 5308. Swedish Environmental Protection Agency.
- Pedersen, E. and K Persson Waye. 2008. Wind turbines-low level noise sources interfering with restoration. *Environmental Research Letters* 3: 1-5
- Pedersen, E. and K. Persson Waye. 2007. Wind turbine noise, annoyance and self-reported health and wellbeing in different living environments, *Occupational and Environmental Medicine* 64: 480–486.
- Pedersen, E. and K. Persson Waye. 2004. Perception and annoyance due to wind turbine noise: A dose-response relationship, *Journal of the Acoustical Society of America* 116: 3460–3470.

- Pedersen, E., L. R.-M. Hallberg, and K. Persson Waye. 2007. Living in the vicinity of wind turbines A grounded theory study. *Qualitative Research in Psychology* 4: 49–63.
- Pedersen, T. H. 2008. Low frequency noise from large Wind Turbines A procedure for evaluation of the audibility for low frequency sound and a literature study. *DELTA Report EP- 06*.
- Persson Waye, K. 2004. Effects of low frequency noise on sleep. Noise and Health 6 (23): 87-91.
- Persson Waye, K. and E. Öhrström 2002. Psycho-acoustic characters of relevance for annoyance of wind turbine noise. *J. Sound & Vibration* 250 (1): 65-73.
- Persson R. M. Albin, J.Ardö, J. Björk, and K. Jakobsson. 2007. Trait anxiety and modeled exposure determinants of self reported annoyance to sound, air pollution and other environmental factors in the home. *International Archives of Occupational and Environmental Health* 18: 179-191
- Peters, A. J. M., R.M. Abrams, K.J. Gerhardt, and S.K. Griffiths. 1993. Transmission of airborne sound from 50 to 20,000 Hz into the abdomen of sheep. *Journal of Low Frequency Noise and Vibration* 12: 16-24.
- Pierpont, N. 2009, pre-publication draft. *Wind Turbine Syndrome: a report on a natural experiment*. http://www.windturbinesyndrome.com/wp-content/uploads/2009/03/ms-ready-for-posting-on-wtscom-3-7-09.pdf.
- Porter, N.D., I.H. Flindell, and B.F. Berry. 1998. Health-Based Noise Assessment Methods A Review and Feasibility Study. NPL Report CMAM 16.
- Sadock, B. J., and V.A. Sadock, Eds. 2005. *Kaplan & Sadock's Comprehensive Textbook of Psychiatry*, 8th Edition. Philadelphia, PA: Lippincott Williams & Wilkins.
- Sakai, A. L.P. Feigen and A.A. Luisada. 1971. Frequency distribution of the heart sounds in normal man. *Cardiovascular Research* 5 (3): 358-363.
- Sasser, S.M., R.W. Sattin, R.C. Hunt, and J. Krohmer. 2006. Blast lung injury. *Prehospital Emergency Care* 10: 165-72.
- Schust, M. 2004. Effects of low frequency noise up to 100 Hz. Noise & Health 6 (23): 73-85.
- Smith, S.D. 2002. Characterizing the effect of airborne vibration on human body vibration response. *Aviation, Space and Environmental Medicine* 73: 36 45.
- Spiegel, H. 1997. 1997. Nocebo: The power of suggestibility. *Preventive Medicine* 26: 616.
- Suter, AH. 1991. Noise and its Effects. Report to the Administrative Conference of the United States. http://www.nonoise.org/library/suter/suter.htm.
- Takahashi, Y., K. Kanada, Y. Yonekawa, and N. Harada. 2005. A study on the relationship between subjective unpleasantness and body surface vibrations induced by high-level low-frequency pure tones. *Industrial Health* 43: 580-587.
- Takahashi, Y., Y. Yonekawa, K. Kanada, and S. Maeda. 1999. A pilot study on human body vibration induced by low frequency noise. *Industrial Health* 37: 28-35.

- Todd, N., S.M. Rosengren, and J.G. Colebatch. 2008a. Tuning and sensitivity of the human vestibular system to low frequency vibration. *Neuroscience Letters* 444: 36-41.
- Todd, N.P., S.M. Rosengren, and J.G. Colebatch. 2008b. A source analysis of short-latency evoked potentials produced by air- and bone-conducted sound. *Journal of Clinical Neurophysiology* 119: 1881-94.
- Truax, Barry, ed. 1999. Handbook for Acoustic Ecology, Second Edition. Originally published by the World Soundscape Project, Simon Fraser University, and ARC Publications, 1978
- U.S. Environmental Protection Agency (EPA). 1974. *Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety*. EPA/ONAC 550/9-74-004, March 1974. http://www.nonoise.org/library/levels/levels.htm.
- U.S. Environmental Protection Agency (EPA). 1975. Model Noise Control Ordinance. http://www.nonoise.org/epa/Roll16/roll16doc6.pdf.
- van den Berg, G. P. 2004: Do Wind Turbines produce significant low frequency sound levels? *Proc 11th International Meeting on Low Frequency Noise and Vibration and its Control, Maastricht August 2004, 367-376.*
- van den Berg, G. P. 2003. Effects of the wind profile at night on wind turbine noise. *Journal of Sound and Vibration*. http://www.nowap.co.uk/docs/windnoise.pdf.
- Van Dijk F.J.H., J.H. Ettema, and R.L. Zielhuis. 1987. Non-auditory effects of noise: VII. Evaluation, conclusions, and recommendations. *International Archives of Occupational and Environmental Health* 59: 147 152.
- van Kamp, M. Haines, J. Hatfield, R.F. Job, S.A. Stanfield and R.K. Stellato. 2004. The role of noise sensitivity in the noise response relation: A comparison of three international airport studies. *Journal of the Acoustical Society of America* 116: 3471-79.
- Webster, J.C. 1978. Speech interference aspects of noise. In *Noise and Audiology*, ed. Lipscomb DL, Baltimore: University Park Press.
- Wilder D.G., D.E. Wasserman, and J. Wasserman. 2002. Occupational vibration exposure. In Physical and Biological Hazards of the Workplace, ed. Wald PH, Stave GM. John Wiley and Sons, New York.
- Wolsink, M., M. Sprengers, A. Keuper, T.H. Pedersen, and C.A. Westra. 1993. Annoyance from wind turbine noise on sixteen sites in three countries. *Proceedings of the European Community Wind Energy Conference*. Lübeck, Travemünde. 273–276.
- World Health Organization (WHO). 1999. Guidelines for Community Noise (edited by B. Berglund, T. Lindvall, D. Schwela, K-T. Goh). The World Health Organization, Geneva, Switzerland. ISBN: 9971: 9971-88-770-3
 http://whqlibdoc.who.int/hq/1999/a68672.pdf.

- World Health Organization (WHO). 1993. International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10), *Classification of Mental and Behavioural Disorders*. Geneva.
- Yamada, S., 1980. Hearing of low frequency sound and influence on the body. Conference on Low Frequency Noise and Hearing. Aalborg, Denmark. 95-102. (Eds. H Møller and P Rubak).
- Yamada, S., M. Ikuji, S. Fujikata, T. Watanabe, and T. Kosaka. 1983. Body sensations of low frequency noise of ordinary persons and profoundly deaf persons. *Journal of Low Frequency Noise and Vibration* 2: 32-36.
- Young, E.D., C. Fernandez, and J.M. Goldberg. 1977. Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. *Acta Otolaryngol* 84: 352-60.

Additional References

- Alberts, D. 2006. Primer for Addressing Wind Turbine Noise.

 http://www.maine.gov/doc/mfs/windpower/pubs/pdf/AddressingWindTurbine
 Noise.pdf.
- American National Standards Institute. 1996. *American National Standard Specification for Audiometers*, ANSI S3.6-1996. New York: Acoustical Society of America.
- Chatham-Kent Public Health Unit. 2008. The Health Impact of Wind Turbines: a Review of the Current White, Grey and Published Literature 2008. http://www.wind-works.org/LargeTurbines/Health%20and%20Wind%20by%20C-K%20Health%20Unit.pdf.
- Copes, R. and K. Rideout. Wind Turbines and Health: A Review of Evidence. Ontario Agency for Health Protection and Promotion 2009.

 http://www.oahpp.ca/Documents/Wind%20Turbines%20-%20Sept%2010%202009.pdf.
- Draft New Zealand standard for wind turbine sound. http://shop.standards.co.nz/drafts/DZ6808-DZ6808Publiccommentdraft.pdf.
- Hellwig, R. and Lampeter, R. 2009. Critiques on Kamperman and James paper on wind turbine noise. March. http://www.dekalbcounty.org/Planning/Exhibit_M.pdf.
- Stelling, K. and D. Phyt. 2009. Summary of recent research on adverse health effects of wind turbines. http://windconcernsontario.files.wordpress.com/2009/08/adverse-health-effects-of-wind-turbines1.pdf.
- Fox Business. 2009. Ontario citizen takes legal aim at government of Ontario's flagship Green Energy Act.

 http://www.foxbusiness.com/story/markets/industries/energy/ontario-citizen
 - http://www.foxbusiness.com/story/markets/industries/energy/ontario-citizen-takes-legal-aim-government-ontarios-flagship-green-energy-act/.

- Industrial Wind Action Group. 2009. Maine Osteopathic Association Resolution: Wind Energy and Public Health. http://www.windaction.org/documents/23515.
- Kamperman, G. and R. James. 2008. Why noise criteria are necessary for proper siting of wind turbines. http://www.windturbinesyndrome.com/wp-content/uploads/2008/11/kamperman-and-james-9-pp.pdf.
- Kamperman, G., and R. James. 2008. The how to guide to siting wind turbines to prevent health risks from sound. http://www.savethebluffs.ca/archives/files/kamperman-james-8-26-08-report.pdf.
- Klug, H. Noise from wind turbines standards and noise reduction procedures. http://www.sea-acustica.es/Sevilla02/envgen013.pdf.
- Keith, S. E., D. S. Michaud, and S. H. P. Bly. 2008. A proposal for evaluating the potential health effects of wind turbine noise for projects under the Canadian Environmental Assessment Act. Journal of Low Frequency Noise, Vibration and Active Control, 27 (4):253-265.
- Ramakrishnan, R. 2007. Acoustic Consulting Report Prepared for the Ontario Ministry of the Environment: Wind Turbine Facilities Noise Issues. Aiolos Engineering Corporation. https://ospace.scholarsportal.info/bitstream/1873/13073/1/283287.pdf.
- Regan, B. and T.G. Casey. 2006. Wind Turbine Noise Primer, *Canadian Acoustics Journal* 34 (2).
- Rogers, A. and J. Manwell . Wright, S. 2002. Wind turbine acoustic noise.

 http://www.ceere.org/rerl/publications/whitepapers/Wind_Turbine_Acoustic_N_oise_Rev2006.pdf/
- Soysai, H., and O. Soysai. Wind farm noise and regulations in the eastern United States. 2007. *Proceedings of the Second International Meeting on Wind Turbine Noise*. Lyon, France: September 20-21, 2007. INCE/Europe.
- State of Rhode Island, Department of Environmental Management. 2009. *Terrestrial Wind Turbine Siting Report*. http://www.dem.ri.gov/cleannrg/pdf/terrwind.pdf.
- Ward, W.D, L.H. Royster, and J.D. Royster. 2003. Anatomy and Physiology of the Ear: Normal and Damaged Hearing. In *The Noise Manual*, Eds. Berger EH, Royster LH, Royster JD, Driscoll DP, Layne M. AIHA Press, Fairfax VA.
- Welgampola, M.S., S.M. Rosengren, G.M. Halmagyi, and J.G. Colebatch. 2003. Vestibular activation by bone conducted sound. *Journal of Neurology, Neurosurgery and Psychiatry* 74: 771-778.
- Wilder, D.G., D.E. Wasserman, and J. Wasserman. 2002. Occupational Vibration Exposure. In *Physical and Biological Hazards of the Workplace*, Ed. Wald PH, Stave GM. John Wiley and Sons, New York.
- World Health Organization (WHO). 2009. Night Noise Guidelines for Europe. The World Health Organization, Geneva, Switzerland. http://www.euro.who.int/document/e92845.pdf.

APPENDIX A Fundamentals of Sound

APPENDIX A

Fundamentals of Sound

The following appendix provides additional background information on sound and how it is defined.

One atmospheric pressure is given by 100,000 pascals (Pa), where one pascal is one Newton per square meter (N/m²), and a sound pressure of 94 dB re 20μ Pa is given by 1 Pa (See later for decibels). The frequency of the fluctuations may be between 20 times a second (20 Hz), and up to 20,000 times a second (20,000 Hz) for the "audible" noise. Frequencies below 20 Hz are commonly called "infrasound," although there is a very fuzzy boundary between infrasound and low frequency noise. Infrasound at high levels is audible. Low frequency noise might be from about 10 Hz to about 200 Hz.

In addition to frequency, the quantities which define a sound wave include:

- Pressure, P
- Wavelength, λ
- Velocity, c = 340m/s approx, depending on temperature

The velocity and wavelength are related by: velocity = wavelength x frequency,

Relating frequency and wavelength by velocity gives

Freq Hz	16	31.5	63	125	250	500	1000	2000	4000
Wavelength m	21	11	5.4	2.7	1.4	0.68	0.34	0.17	0.085

Low frequencies have long wavelengths. It is useful to develop an appreciation of frequencies and related wavelengths, since this helps an understanding of noise propagation and control.

Sound pressure in a wave is force per unit of area of the wave and has units of N/m^2 , which is abbreviated to Pa. The sound pressure fluctuates above and below atmospheric pressure by a very small amount.

The sound power is a characteristic of the source, and is its rate of production of energy, expressed in watts. The sound power is the fundamental property of the source, whilst the sound pressure at a measurement location depends on the transmission path from source to receiver. Most sound sources, including wind turbines, are specified in terms of their sound power. The sound power of a wind turbine is typically in the 100-105 dBA range, which is similar to that of a leaf blower. The sound power is used to predict propagation of the sound, where the source is assumed to be at the hub.

A-1

Sound Levels

The decibel is the logarithm of the ratio between two values of a quantity such as power, pressure or intensity, with a multiplying constant to give convenient numerical factors. Logarithms are useful for compressing a wide range of quantities into a smaller range. For example:

$$log_{10}10 = 1$$
$$log_{10}100 = 2$$
$$log_{10}1000 = 3$$

The ratio of 1000:10 is compressed into a ratio of 3:1.

This approach is advantageous for handling sound levels, where the ratio of the highest to the lowest sound which we are likely to encounter is as high as 1,000,000 to 1. A useful development, many years ago, was to take the ratios with respect to the quietest sound which we can hear. This is the threshold of hearing at 1,000 Hz, which is 20 microPascals (μ Pa) (2x10-5Pa) of pressure for the average young healthy person. Sound powers in decibels are taken with respect to a reference level of 10-12 watts.

When the word "level" is added to the word for a physical quantity, decibel levels are implied, denoted by L_X , where $_X$ is the symbol for the quantity.

Pressure level
$$L_p = 20 \log_{10} \left[\frac{P}{P_0} \right] dB$$

where P is the measured pressure and P_0 is the reference pressure level of $2x10^{-5}$ Pa

A little calculation allows us to express the sound pressure level at a distance from a source of known sound power level as

Sound pressure level, $L_P = L_w - 20\log[r] - 11 \text{ dB}$

Where

L_p is the sound pressure level

 $L_{\mbox{\scriptsize w}}$ is the sound power level of the source

r is the distance from the source

This is the basic equation for spherical sound propagation. It is used in prediction of wind turbine sound but, in a real calculation, has many additions to it, to take into account the atmospheric, ground and topographic conditions. However, as a simple calculation, the sound level at a distance of 500m from a source of sound power 100 dBA is 35 dBA.

Equivalent level (Leq): This is a steady level over a period of time, which has the same energy as that of the fluctuating level actually occurring during that time. A-weighted equivalent level, designated LAeq, is used for many legislative purposes, including for assessment of wind turbine sound.

Percentiles (LN)L These are a statistical measure of the fluctuations in overall noise level, that is, in the envelope of the noise, which is usually sampled a number of times per second, typically ten times. The most used percentiles are L90 and L10. The L90 is the level exceeded for 90 percent of the time and represents a low level in the noise. It is often used to assess

background noise. The L10 is the level exceeded for 10 percent of the time and is a measure of the higher levels in a noise. Modern computing sound level meters give a range of percentiles. Note that the percentile is a statistical measure over a specified time interval.

Frequency Analysis

This gives more detail of the frequency components of a noise. Frequency analysis normally uses one of three approaches: octave band, one-third octave band or narrow band.

Narrow band analysis is most useful for complex tonal noises. It could be used, for example, to determine a fan tone frequency, to find the frequencies of vibration transmission from machinery or to detect system resonances. All analyses require an averaging over time, so that the detail of fluctuations in the noise is normally lost.

Criteria for assessment of noise are based on dBA, octave bands, or 1/3-octave band measurements. These measures clearly give increasingly detailed information about the noise.

APPENDIX B The Human Ear

APPENDIX B

The Human Ear

Humans have ears with three general regions:

- 1. An outer ear, including an ear (auditory) canal
- 2. An air-containing *middle ear* that includes an eardrum and small bones called ossicles (three in mammals, one in other animals)
- 3. An *inner ear* that includes organs of hearing (in mammals, this is the organ of Corti in the cochlea) and balance (vestibular labyrinth)

Airborne sound passes thorough the ear canal, making the eardrum and ossicles vibrate, and this vibration then sets the fluids of the cochlea into motion. Specialized "hair cells" convert this fluid movement into nerve impulses that travel to the brain along the auditory nerve. The hair cells, nerve cells, and other cells in the cochlea can be damaged by excessive noise, trauma, toxins, ear diseases, and as part of the aging process. Damage to the cochlea causes "sensorineural hearing loss," the most common type of hearing loss in the United States.

It is essential to understand the role of the middle ear, as well as the difference between air conduction and bone conduction. The middle ear performs the essential task of converting airborne sound into inner ear fluid movement, a process known as impedance matching (air is a low-impedance medium, meaning that its molecules move easily in response to sound pressure, while water is a high-impedance medium). Without impedance matching, over 99.9 percent of airborne sound energy is reflected away from the body. The middle ear enables animals living in air to hear very soft sounds that would otherwise be inaudible, but it is unnecessary for animals that live in water, because sound traveling in water passes easily into the body (which is mostly water). When a child has an ear infection, or an adult places earplugs in his ears, a "conductive hearing loss" dramatically reduces the transmission of airborne sound into the inner ear. People with conductive hearing loss can still hear sounds presented directly to the skull by "bone conduction." This is how both humans and fishes hear underwater or when a vibrating tuning fork is applied to the head, but it requires much more acoustic energy than air conduction hearing.

B-1

APPENDIX C Measuring Sound

APPENDIX C

Measuring Sound

A sound level meter is the standard way of measuring sound. Environmental sound is normally assessed by the A-weighting. Although hand-held instruments appear to be easy to use, lack of understanding of their operation and limitations, and the meaning of the varied measurements which they can give, may result in misleading readings.

The weighting network and electrical filters are an important part of the sound level meter, as they give an indication of the frequency components of the sound. The filters are as follows:

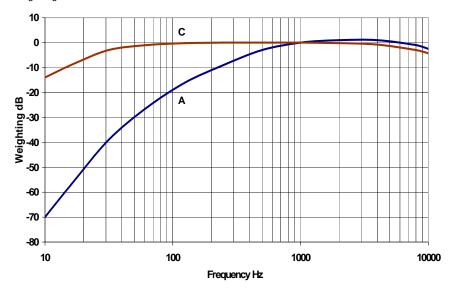
• A-weighting: on all meters

• C-weighting: on most meters

• Linear (Z-weighting): on many meters

Octave filters: on some meters

Third octave filters: on some meters


• Narrow band: on a few meters

Sound level meter weighting networks are shown in Figure C-1. Originally, the A-weighting was intended for low levels of noise. C-weighting was intended for higher levels of noise. The weighting networks were based on human hearing contours at low and high levels and it was hoped that their use would mimic the response of the ear. This concept, which did not work out in practice, has now been abandoned and A- and C-weighting are used at all levels. Linear weighting is used to detect low frequencies. A specialist G-weighting is used for infrasound below 20 Hz.

Figure C-1 shows that the A-weighting depresses the levels of the low frequencies, as the ear is less sensitive to these. There is general consensus that A-weighting is appropriate for estimation of the hazard of NIHL. With respect to other effects, such as annoyance, A-weighting is acceptable if there is largely middle and high frequency noise present, but if the noise is unusually high at low frequencies, or contains prominent low frequency tones, the A-weighting may not give a valid measure. Compared with other noise sources, wind turbine spectra, as heard indoors at typical separation distances, have less low frequency content than most other sources (Pedersen, 2008).

C-1

FIGURE C-1 Weighting Networks

APPENDIX D Propagation of Sound

APPENDIX D

Propagation of Sound

The propagation of noise from wind turbines is determined by a number of factors, including:

- Geometrical spreading, given by $K = 20\log[r] 11 \, dB$, at a distance r
- Molecular absorption. This is conversion of acoustic energy to heat and is frequency dependent
- Turbulent scattering from local variations in wind velocity and air temperature and is moderately frequency dependent
- Ground effects—reflection, topography and absorption are frequency dependent; their effects increasing as the frequency increases
- Near surface effects temperature and wind gradients.

The sound pressure at a point, distant from source, is given by

$$L_P = L_W - K - D - A_A - A_G$$
 (dB)

In which:

L_P is the sound pressure at the receiving point

 L_W is the sound power of the turbine in decibels re $10^{\text{-}12}$ watts

K is the geometrical spreading term, which is inherent in all sources

D is a directivity index, which takes non-uniform spreading into account

A_A is an atmospheric absorption and other near surface effects term

A_G is a ground absorption and other surface effects term

Near surface meteorological effects are complex, as wind and temperature gradients affect propagation through the air.

APPENDIX E **Expert Panel Members**

APPENDIX E

Expert Panel Members

Members of the expert panel are listed below. Biographies of each member are provided following the list.

Expert Panel Members

W. David Colby, M.D.

Chatham-Kent Medical Officer of Health (Acting)

Associate Professor, Schulich School of Medicine & Dentistry, University of Western Ontario

Robert Dobie, M.D.

Clinical Professor, University of Texas, San Antonio Clinical Professor, University of California, Davis

Geoff Leventhall, Ph.D.

Consultant in Noise Vibration and Acoustics, UK

David M. Lipscomb, Ph.D.

President, Correct Service, Inc.

Robert J. McCunney, M.D.

Research Scientist, Massachusetts Institute of Technology Department of Biological Engineering,

Staff Physician, Massachusetts General Hospital Pulmonary Division; Harvard Medical School

Michael T. Seilo, Ph.D.

Professor of Audiology, Western Washington University

Bo Søndergaard, M.Sc. (Physics)

Senior Consultant, Danish Electronics Light and Acoustics (DELTA)

Technical Advisor

Mark Bastasch

Acoustical Engineer, CH2M HILL

Panel Member Biographies

W. David Colby, M.D.

W. David Colby M.Sc., M.D., FRCPC, is a fellow of the Royal College of Physicians and Surgeons of Canada in Medical Microbiology. Dr Colby is the Acting Medical Officer of Health in Chatham-Kent, Ontario and Associate Professor of Medicine, Microbiology/Immunology and Physiology/Pharmacology at the Schulich School of Medicine and Dentistry at the University of Western Ontario. He received his M.D. from the University of Toronto and completed his residency at University Hospital, London, Ontario. While still a resident he was given a faculty appointment and later was appointed Chief of Microbiology and Consultant in Infectious Diseases at University Hospital. Dr Colby lectures extensively on antimicrobial chemotherapy, resistance and fungal infections in addition to a busy clinical practice in Travel Medicine and is a Coroner for the province of Ontario. He has received numerous awards for his teaching. Dr. Colby has a number of articles in peer-reviewed journals and is the author of the textbook Optimizing Antimicrobial Therapy: A Pharmacometric Approach. He is a Past President of the Canadian Association of Medical Microbiologists. On the basis of his expertise in Public Health, Dr Colby was asked by his municipality to assess the health impacts of wind turbines. The report, titled *The* Health Impact of Wind Turbines: A Review of the Current White, Grey, and Published Literature is widely cited internationally.

Robert Dobie, M.D.

Robert Dobie, M.D., is clinical professor of otolaryngology at both the University of Texas Health Science Center at San Antonio and the University of California-Davis. He is also a partner in Dobie Associates, a consulting practice specializing in hearing and balance, hearing conservation, and ear disorders. The author of over 175 publications, his research interests include age-related and noise-induced hearing loss, as well as tinnitus and other inner ear disorders. He is past president of the Association for Research in Otolaryngology, past chair of the Hearing and Equilibrium Committee of the American Academy of Otolaryngology-Head and Neck Surgery, and has served on the boards and councils of many other professional organizations and scholarly journals.

Geoff Leventhall, Ph.D.

Geoff is a UK-based noise and vibration consultant who works internationally. His academic and professional qualifications include Ph.D. in Acoustics, Fellow of the UK Institute of Physics, Honorary Fellow of the UK institute of Acoustics (of which he is a former President), Distinguished International Member of the USA Institute of Noise Control Engineering, Member of the Acoustical Society of America.

He was formerly an academic, during which time he supervised 30 research students to completion of their doctoral studies in acoustics. Much of his academic and consultancy work has been on problems of infrasound and low frequency noise and control of low frequency noise by active attenuation

He has been a member of a number of National and International committees on noise and acoustics and was recently a member of two committees producing reports on effects of noise on health: the UK Health Protection Agency Committee on the Health Effects of

Ultrasound and Infrasound and the UK Department of Health Committee on the Effects of Environmental Noise on Health.

David M. Lipscomb, Ph.D.

Dr. David M. Lipscomb received a Ph. D. in Hearing Science from the University of Washington (Seattle) in 1966. Dr. Lipscomb taught at the University of Tennessee for more than two decades in the Department of Audiology and Speech Pathology. While he was on the faculty, Dr. Lipscomb developed and directed the department's Noise Research Laboratory. During his tenure at Tennessee and after he moved to the Pacific Northwest in 1988, Dr. Lipscomb has served as a consultant to many entities including communities, governmental agencies, industries, and legal organizations.

Dr. Lipscomb has qualified in courts of law as an expert in Audiology since 1966. Currently, he investigates incidents to determine whether an acoustical warning signal provided warning to individuals in harms way, and, if so, at how many seconds before an incident. With his background in clinical and research audiology, he undertakes the evaluation of hearing impairment claims for industrial settings and product liability.

Dr. Lipscomb was a bioacoustical consultant to the U. S. Environmental Protection Agency Office of Noise Abatement and Control (ONAC) at the time the agency was responding to Congressional mandates contained in the Noise Control Act of 1972. He was one of the original authors of the Criteria Document produced by ONAC, and he served as a reviewer for the ONAC document titled *Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety*. Dr. Lipscomb's experience in writing and reviewing bioacoustical documentation has been particularly useful in his review of materials for AWEA regarding wind farm noise concerns.

Robert J. McCunney, M.D.

Robert J. McCunney, M.D., M.P.H., M.S., is board certified by the American Board of Preventive Medicine as a specialist in occupational and environmental medicine. Dr. McCunney is a staff physician at Massachusetts General Hospital's pulmonary division, where he evaluates and treats occupational and environmental illnesses, including lung disorders ranging from asbestosis to asthma to mold related health concerns, among others. He is also a clinical faculty member of Harvard Medical School and a research scientist at the Massachusetts Institute of Technology Department of Biological Engineering, where he participates in epidemiological research pertaining to occupational and environmental health hazards.

Dr. McCunney received his B.S. in chemical engineering from Drexel University, his M.S. in environmental health from the University of Minnesota, his M.D. from the Thomas Jefferson University Medical School and his M.P.H. from the Harvard School of Public Health. He completed training in internal medicine at Northwestern University Medical Center in Chicago. Dr. McCunney is past president of the American College of Occupational and Environmental Medicine (ACOEM) and an accomplished author. He has edited numerous occupational and environmental medicine textbooks and over 80 published articles and book chapters. He is the Editor of all three editions of the text book, *A Practical Approach to Occupational and Environmental Medicine*, the most recent edition of which was published in 2003. Dr. McCunney received the Health Achievement Award from ACOEM in 2004.

Dr. McCunney has extensive experience in evaluating the effects of noise on hearing via reviewing audiometric tests. He has written book chapters on the topic and regularly lectures at the Harvard School of Public Health on "Noise and Health."

Michael T. Seilo, Ph.D.

Dr. Michael T. Seilo received his Ph.D. in Audiology from Ohio University in 1970. He is currently a professor of audiology in the Department of Communication Sciences and Disorders at Western Washington University in Bellingham, Washington where he served as department chair for a total of more than twenty years. Dr. Seilo is clinically certified by the American Speech-Language-Hearing Association (ASHA) in both audiology and speech-language pathology and is a long-time member of ASHA, the American Academy of Audiology, and the Washington Speech and Hearing Association.

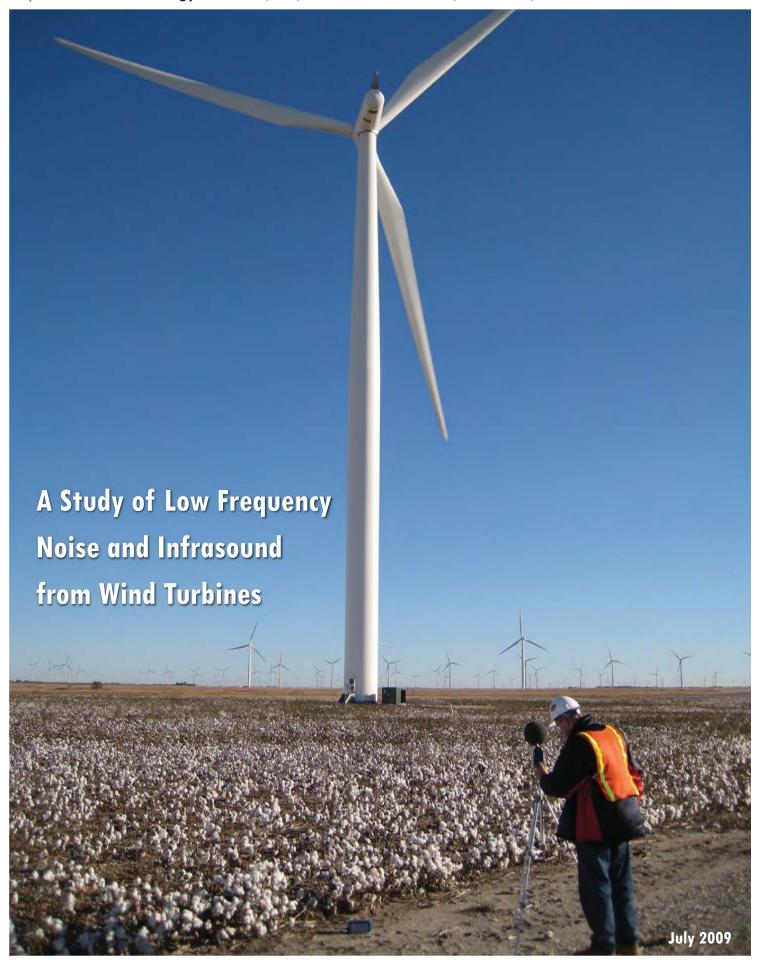
For many years Dr. Seilo has taught courses in hearing conservation at both the graduate and undergraduate level. His special interest areas include speech perception and the impact of noise on human hearing sensitivity including tinnitus.

Dr. Seilo has consulted with industries on the prevention of NIHL and he has collaborated with other professionals in the assessment of hearing-loss related claims pertaining to noise.

Bo Søndergaard, M.Sc. (Physics)

Bo Søndergaard has more than 20 years of experience in consultancy in environmental noise measurements, predictions and assessment. The last 15 years with an emphasis on wind turbine noise. Mr. Søndergaard is the convenor of the MT11 work group under IEC TC88 working with revision of the measurement standard for wind turbines IEC 61400-11. He has also worked as project manager for the following research projects: Low Frequency Noise from Large Wind Turbines for the Danish Energy Authority, Noise and Energy optimization of Wind Farms, and Noise from Wind Turbines in Wake for Energinet.dk.

Technical Advisor Biography


Mark Bastasch

Mr. Bastasch is a registered acoustical engineer with CH2M HILL. Mr. Bastasch assisted AWEA and CanWEA in the establishment of the panel and provided technical assistance to the panel throughout the review process. Mr. Bastasch's acoustical experience includes preliminary siting studies, regulatory development and assessments, ambient noise measurements, industrial measurements for model development and compliance purposes, mitigation analysis, and modeling of industrial and transportation noise. His wind turbine experience includes some of the first major wind developments including the Stateline project, which when built in 2001 was the largest in the world. He also serves on the organizing committee of the biannual International Wind Turbine Noise Conference, first held in Berlin, Germany, in 2005.

Acknowledgements

We acknowledge the following person for suggestions and comments on the manuscript. The final responsibility for the content remains with the authors.

Richard K. Jennings, M.D. —Psychiatrist, Retired

Prepared by Epsilon Associates, Inc., 3 Clock Tower Place, Suite 250, Maynard, MA 01754

A Study of Low Frequency Noise and Infrasound from Wind Turbines

Prepared for:

NextEra Energy Resources, LLC 700 Universe Boulevard Juno Beach, FL 33408

Prepared by:

Epsilon Associates, Inc. 3 Clock Tower Place, Suite 250 Maynard, MA 01754

Robert D. O'Neal, INCE, CCM Robert D. Hellweg, Jr., P.E., INCE Bd. Certified Richard M. Lampeter, INCE

July 2009

TABLE OF CONTENTS

ES	EXECUTIVE SUMMARY 0						
1.0	INTRO	RODUCTION 1-					
2.0	DEFIN 2.1	IITIONS	aguangy Naisa/Saund	2-1 2-1			
	2.1	Infrasou	equency Noise/Sound und	2-1			
3.0	EFFEC	TS OF LO	OW FREQUENCY SOUND AND INFRASOUND	3-1			
	3.1	Human	S	3-1			
		3.1.1	Threshold of hearing	3-1			
		3.1.2	Loudness	3-1			
		3.1.3	Non-auditory perceptions	3-2			
	3.2	Resider	ntial Structures	3-2			
		3.2.1	Airborne Vibration	3-2			
		3.2.2	Ground borne Vibration	3-2			
4.0	GUID	GUIDELINES AND CRITERIA					
	4.1	.1 United States Government					
	4.2	Americ	an National Standards (voluntary)	4-1			
		4.2.1	ANSI/ASA S12.9-2007/Part 5	4-1			
		4.2.2	ANSI S12.9-2005/Part 4	4-1			
		4.2.3	ANSI/ASA S12.2-2008	4-3			
	4.3	Other C	Criteria	4-6			
		4.3.1	World Health Organization (WHO)	4-6			
		4.3.2	The UK Department for Environment, Food, and Rural Affairs (DEFRA)	4-6			
		4.3.3	C-weighted minus A-weighted (Lpc- LpA)	4-8			
		4.3.4	Threshold of hearing	4-8			
		4.3.5	Ground-Borne Vibration	4-9			
5.0	LITER/	ATURE R	EVIEW	5-1			
	5.1	H. Moe	eller and C. S. Pedersen (2004)	5-1			
	5.2	Leventh	nall (2003)	5-1			
	5.3	Leventh	nall (2006)	5-1			
	5.4	Delta (2008)					
	5.5	Hayes McKenzie (2006)					
	5.6	Howe (2006)					
	5.7	Branco	(2004)	5-3			
	5.8	5.8 French National Academy of Medicine (2006)					
6.0	REPRESENTATIVE WIND TURBINES			6-1			

7.0	FIELD	PROGR.	AM		<i>7</i> -1	
	<i>7</i> .1	GE 1.5	sle and Sier	nens SWT-2.3-93	<i>7</i> -1	
	7.2	7.2 Measurement Equipment				
8.0	RESU	LTS AND	COMPARI	SON TO CRITERIA	8-1	
		8.0.1	Audibilit	Ý	8-1	
		8.0.2	UK DEFR	A Disturbance Criteria	8-1	
		8.0.3	Perceptib	ole Vibration, Rattle and Annoyance – Outdoor Measurements	8-1	
		8.0.4	ANSI/AS	A S12.2 Low Frequency Criteria – Indoor Measurements	8-2	
	8.1	93	8-2			
		8.1.1	Outdoor	Measurements - Siemens SWT-2.3-93	8-2	
			8.1.1.1	Outdoor Audibility	8-2	
			8.1.1.2	UK DEFRA Disturbance Criteria – Outdoor measurements	8-2	
			8.1.1.3	Perceptible Vibration, Rattle and Annoyance - Outdoor		
				Measurements	8-3	
		8.1.2	Indoor M	easurements - Siemens SWT-2.3-93	8-3	
			8.1.2.1	Indoor Audibility	8-3	
			8.1.2.2	UK DEFRA Disturbance Criteria – Indoor Measurements	8-4	
			8.1.2.3	ANSI/ASA S12.2 Low Frequency Criteria – Indoor		
				Measurements	8-4	
	8.2	GE 1.5	sle		8-4	
		8.2.1	Outdoor	Measurements - GE 1.5sle	8-4	
			8.2.1.1	Outdoor Audibility	8-5	
			8.2.1.2	UK DEFRA Disturbance Criteria – Outdoor measurements	8-5	
			8.2.1.3	Perceptible Vibration, Rattle and Annoyance - Outdoor		
				Measurements	8-5	
		8.2.2	Indoor M	easurements - GE 1.5sle	8-5	
			8.2.2.1	Indoor Audibility	8-6	
			8.2.2.2	UK DEFRA Disturbance Criteria – Indoor Measurements	8-6	
			8.2.2.3	ANSI/ASA \$12.2 Low Frequency Criteria – Indoor		
				Measurements	8-6	
	8.3	Noise F	Reduction fi	rom Outdoor to Indoor	8-7	
	8.4	Ground	d-Borne Vib	ration	8-8	
9.0	CON	CLUSION	1		9-1	
10.0	BIBLI	OGRAPH	ΙΥ		10-1	

ES EXECUTIVE SUMMARY

Early down-wind wind turbines in the US created low frequency noise; however current up-wind wind turbines generate considerably less low frequency noise. The results of Epsilon Associates, Inc. (Epsilon) analysis and field testing indicate that there is no audible infrasound either outside or inside homes at the any of the measurement sites – the closest site was approximately 900 feet from a wind farm. Wind farms at distances beyond 1000 feet meet the ANSI standard for low frequency noise in bedrooms, classrooms, and hospitals, meet the ANSI standard for thresholds of annoyance from low frequency noise, and there should be no window rattles or perceptible vibration of lightweight walls or ceilings within homes. In homes there may be slightly audible low frequency noise (depending on other sources of low frequency noise); however, the levels are below criteria and recommendations for low frequency noise within homes. In accordance with the above findings and in conjunction with our extensive literature search of scientific papers and reports, there should be no adverse public health effects from infrasound or low frequency noise at distances greater than 1000 feet from the wind turbine types measured by Epsilon: GE 1.5sle and Siemens SWT 2.3-93.

<u>Siemens SWT 2.3-93 Wind Turbine</u>. Outdoor measurements of Siemens SWT 2.3-93 wind turbines under high output and relatively low ground wind speed (which minimized effects of wind noise) at 1000 feet indicate that infrasound is inaudible to the most sensitive people (more than 20 dB lower than median thresholds of hearing); that outdoor equivalent ANSI/ASA S12.2 perceptible vibration criteria are met; that the low frequency sounds are compatible with ANSI S12.9 Part 4 levels for minimal annoyance and beginning of rattles; that levels meet outdoor equivalent UK Department for Environment, Food and Rural Affairs (DEFRA) disturbance-based guidelines for use by Environmental Health Officers, and that low frequency sounds might be audible in some cases. Based on the comparisons made to these criteria, there are no low frequency noise problems from Siemens SWT 2.3-93 wind turbines at 1000 feet or beyond.

Indoor measurements of two homes with windows open and closed of Siemens SWT 2.3-93 wind turbines at approximately 920 feet (under high output, maximum noise, and high ground winds) and at 1060 feet (under moderate-high output, maximum noise and relatively low ground winds) indicate infrasound is inaudible to the most sensitive people (more than 25 dB lower than median thresholds of hearing). The low frequency noise at 50 Hz and above might be slightly audible depending on background noises within the home or other external noises. The ANSI/ASA S12.2 low frequency criteria for bedrooms, classrooms and hospitals were met, as were the criteria for moderately perceptible vibrations in light-weight walls and ceilings. DEFRA disturbance based guidelines were met for steady low frequency sounds and were within 2 dB for non-steady low frequency sounds. Based on the comparisons made to these criteria, there are no low frequency noise problems indoors from Siemens SWT 2.3-93 wind turbines at 920 feet or beyond.

<u>GE 1.5sle Wind Turbine</u>. Outdoor measurements of GE 1.5sle wind turbines under high output and relatively low ground wind speed (which minimized effects of wind noise) at 1000 feet indicate that infrasound is inaudible to the most sensitive people (more than 20 dB lower than median thresholds of hearing); that outdoor equivalent ANSI/ASA S12.2 perceptible vibration criteria are

met; that the low frequency sounds are compatible with ANSI S12.9 Part 4 levels for minimal annoyance and beginning of rattles; that levels meet or are within 1 dB of outdoor equivalent DEFRA disturbance-based guidelines; and that the low frequency sounds might be audible in some cases. Based on the comparisons made to these criteria, there are no low frequency noise problems from GE 1.5sle wind turbines at 1000 feet or beyond.

Indoor measurements with windows open and closed of GE 1.5sle wind turbines at approximately 950 feet (under moderate output, maximum noise, and high ground winds) and at approximately 1025 feet (under moderate output, within 1.5 dBA of maximum noise, and high ground winds) indicate infrasound is inaudible to the most sensitive people (more than 25 dB lower than median thresholds of hearing). The low frequency noise at or above 50 or 63 Hz might be slightly audible depending on background noises within the home or other external noises. The ANSI/ASA S12.2 low frequency criteria for bedrooms, classrooms and hospitals were met, as were the criteria for moderately perceptible vibrations in light-weight walls and ceilings. DEFRA disturbance based guidelines were met for steady low frequency sounds and non-steady low frequency sounds. Based on the comparisons made to these criteria, there are no low frequency noise problems indoors for GE 1.5sle wind turbines at distances beyond 950 feet.

<u>Conclusions.</u> Siemens SWT 2.93-93 and GE 1.5sle wind turbines at maximum noise at a distance more than 1000 feet from the nearest residence do not pose a low frequency noise problem. At this distance the wind farms:

- meet ANSI/ASA S12.2 indoor levels for low frequency sound for bedrooms, classrooms and hospitals;
- meet ANSI/ASA S12.2 indoor levels for moderately perceptible vibrations in lightweight walls and ceilings;
- meet ANSI \$12.9 Part 4 thresholds for annoyance and beginning of rattles;
- meet UK DEFRA disturbance based guidelines;
- have no audible infrasound to the most sensitive listeners;
- might have slightly audible low frequency noise at frequencies at 50 Hz and above depending on other sources of low frequency noises in homes, such as refrigerators or external traffic or airplanes; and
- meet ANSI S2.71 recommendations for perceptible ground-borne vibration in residences during night time hours.

1.0 INTRODUCTION

Epsilon Associates, Inc. ("Epsilon") has been retained by NextEra Energy Resources, LLC ("NextEra"), formerly FPL Energy, to investigate whether the operation of their wind turbines may create unacceptable levels of low frequency noise and infrasound. This question has been posed to NextEra, and other wind energy developers and operators of utility-scale wind turbines. NextEra is one of the world's largest generators of wind power with approximately 6,400 net megawatts (MW) as of April 2009.

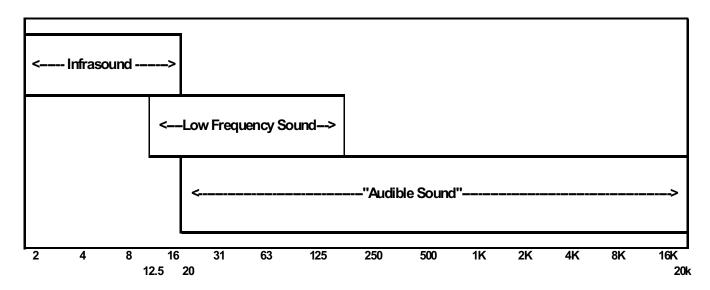
Epsilon determined all means, methods, and the testing protocol without interference or direction from NextEra. No limitations were placed on Epsilon by NextEra with respect to the testing protocol or upon the analysis methods.

This report is composed of two distinct sections: the first portion defines terms, discusses known effects of low frequency sound, and presents scientific guidelines and standards used to evaluate low frequency sound. The second portion of the report examines specific wind turbines used by NextEra, including data from field measurements at operating wind farms, and compares the measured data to guidelines and standards. In addition, each NextEra wind turbine vendor supplied detailed, reference sound level data in both A-weighted and octave band format in accordance with the international standard IEC 61400-11, "Wind Turbine Generator Systems-Part 11; Acoustic Noise Measurement Techniques." These data were used as an aide to focus the field portion of the measurement program.

2.0 DEFINITIONS

2.1 Low Frequency Noise/Sound

The frequency range 20 – 20,000 Hz is commonly described as the range of "audible" noise. The frequency range of low frequency sound is generally from 20 Hertz (Hz) to 200 Hz, and the range below 20 Hz is often described as "infrasound". However, audibility extends to frequencies below 20 Hz.


Low frequency sound has several definitions. American National Standards ANSI/ASA S12.2 and ANSI S12.9 Part 4 have provisions for evaluating low frequency noise, and these special treatments apply only to sounds in the octave bands with 16, 31.5, and 63-Hz midband frequencies. For these reasons, in this paper on wind turbine noise, we use the term "low frequency noise" to include 12.5 Hz – 200 Hz with emphasis on the 16 Hz, 31Hz and 63 Hz octave bands with a frequency range of 11 Hz to 89 Hz.

2.2 Infrasound

IEC 60050-801:1994 "International Electrotechnical Vocabulary – Chapter 801: Acoustics and electroacoustics" defines "infrasound" as "Acoustic oscillations whose frequency is below the low frequency limit of audible sound (about 16 Hz)." This definition is incorrect since sound remains audible at frequencies well below 16 Hz provided that the sound level is sufficiently high. In this paper we define infrasound to be below 20 Hz, which is the limit for the standardized threshold of hearing.

Figure 2.2-1 shows these frequency regions and their common labels. Since there is no sharp change in hearing at 20 Hz, the division into "low-frequency sound" and "infrasound" should only be considered "practical and conventional."

Figure 2.2-1 Frequency Range of "Infrasound", "Low Frequency Sound", and "Audible Sound".

Frequency, Hz

3.0 EFFECTS OF LOW FREQUENCY SOUND AND INFRASOUND

3.1 Humans

3.1.1 Threshold of hearing

Moeller and Pedersen (2004) present an excellent summary on human perception of sound at frequencies below 200 Hz. The ear is the primary organ for sensing infrasound. Hearing becomes gradually less sensitive for decreasing frequencies. But, humans with a normal hearing organ can perceive infrasound at least down to a few hertz if the sound level is sufficiently high.

The threshold of hearing is standardized for frequencies down to 20 Hz (ISO 226:2003). Based on extensive research and data, Moeller and Pedersen propose normal hearing thresholds for frequencies below 20 Hz (see Figure 3.1-1). Moeller and Pedersen suggest that the curve for normal hearing is "probably correct within a few decibels, at least in most of the frequency range."

The hearing thresholds show considerable variability from individual to individual with a standard deviation among subjects of about 5 dB independent of frequency between 3 Hz and 1000 Hz with a slight increase at 20 – 50 Hz. This implies that the audibility threshold for 97.5% of the population is greater than the values in Figure 3.1-1 minus 10 dB and for 84% of the population is greater than the values in Figure 3.1-1 minus 5 dB. Moeller and Pedersen suggest using the pure-tone thresholds in Figure 3.1-1 for non-sinusoidal sound; this relationship is what is used in ISO 226 (International Organization for Standardization) for frequencies down to 20 Hz.

Below 20 Hz as frequency decreases, if the noise source is tonal, the tonal sensation ceases. Below 20 Hz tones are perceived as discontinuous. Below 10 Hz it is possible to perceive the single cycles of a tone, and the perception changes into a sensation of pressure at the ears.

3.1.2 Loudness

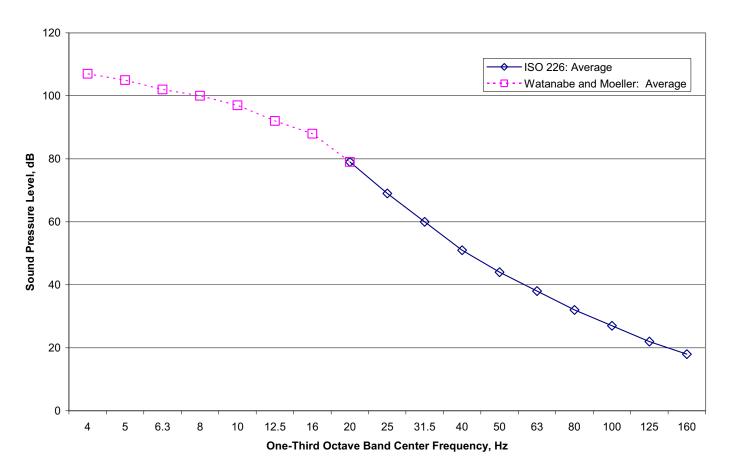
Below 100 Hz, the dynamic range of the auditory system decreases with decreasing frequency, and the compressed dynamic range has an effect on equal loudness contours: a slight change in sound level can change the perceived loudness from barely audible to loud. This combined with the large variation in individual hearing may mean that a low frequency sound that is inaudible to some may be audible to others, and may be relatively loud to some of those for whom it is audible. Loudness for low frequency sounds grows considerably faster above threshold than for sounds at higher frequencies. (Moeller and Pedersen, 2004)

3.1.3 Non-auditory perceptions

Non-auditory perception of low frequency and infrasound occurs only at levels above the auditory threshold. In the frequency range of 4 – 25 Hz and at "levels 20 - 25 dB above [auditory] threshold it is possible to feel vibrations in various parts of the body, e.g., the lumbar, buttock, thigh and calf regions. A feeling of pressure may occur in the upper part of the chest and the throat region" [emphasis added]. (Moeller and Pedersen, 2004).

3.2 Residential Structures

3.2.1 Airborne Vibration


Outdoor low frequency sounds of sufficient amplitude can cause building walls to vibrate and windows to rattle. Homes have low values of transmission loss at low frequencies, and low frequency noise of sufficient amplitude may be audible within homes. Window rattles are not low frequency noise, but may be caused by low frequency noise.

3.2.2 Ground borne Vibration

While not studied nearly as extensively as noise, a few papers were found that examined ground borne vibration from wind turbines (Styles, P. et al, 2005; Hayes McKenzie Partnership, 2006; Gastmeier and Howe (2008)). Measurement of ground borne vibration associated with wind turbine operations were detectable with instruments but were below the threshold of perception, even within the wind farm (Gastmeier and Howe 2008; Snow, D.J., 1997).

Figure 3.1-1 Low Frequency Average Threshold of Hearing

Low Frequency Average Threshold of Hearing: ISO 226 and Watanabe and Moeller (1990) for "Infrasound"

4.0 GUIDELINES AND CRITERIA

4.1 United States Government

There are no specific criteria for low frequency noise in the United States. The US Environmental Protection Agency (EPA) has guidelines for the protection of public health with an adequate margin of safety in terms of annual average A-weighted day-night average sound level (Ldn), but there are no corrections or adjustments for low frequency noise. The US Department of Transportation (DOT) has A-weighted sound pressure level criteria for highway projects and airports, but these do not have adjustments for low frequency noise.

4.2 American National Standards (voluntary)

4.2.1 ANSI/ASA S12.9-2007/Part 5

ANSI/ASA S12.9-2007/Part 5 "Quantities and Procedures for description and measurement of environmental sound. Part 5: Sound Level Descriptors for Determination of Compatible Land Use" has an informative annex which provides guidance for designation of land uses compatible with existing or predicted sound levels. The noise metric in ANSI S12.9 Part 5 is the annual average of the adjusted day-night average outdoor sound level (DNL). Ranges of the DNL are outlined, within which a specific region of compatibility may be drawn. These ranges take into consideration the transmission loss in sound level from outside to inside buildings as commonly constructed in that locality and living habits there. There are adjustments to day-night average sound level to account for the presence of low frequency noise, and the adjustments are described in ANSI S12.9 Part 4.

4.2.2 ANSI S12.9-2005/Part 4

ANSI S12.9-2005 Part 4 "Quantities and Procedures for description and measurement of environmental sound. Part 4: Noise assessment and prediction of long-term community response" provides procedures for assessing outdoor environmental sounds and provides for *adjustments* to measured or predicted adjusted annual outdoor day-night A-weighted sound level to account "for the change in annoyance caused by ... sounds with strong low-frequency content..."

ANSI S12.9 Part 4 does not specifically define the frequency range for "low-frequency" sounds; however, evaluation methods for low frequency noise in Annex D use a sum of the sound pressure levels in the 16, 31 and 63 Hz octave bands. Procedures apply only when the difference in exterior C-weighted and A-weighted sound levels is greater than 10 dB, $(L_{PC} - L_{PA}) > 10$ dB. Complicated procedures are given for adjustments to L_{Aeq} and L_{dn} values. Adjustments are significant for high levels of low frequency sound.

ANSI S12.9 Part 4 states: "Generally, annoyance is minimal when octave-band sound pressure levels are less than 65 dB at 16, 31.5, and 63-Hz mid-band frequencies. However, low-frequency sound characterized by rapidly fluctuating amplitude ... may cause annoyance when these octave-band sound pressure levels are less than 65 dB."

For sounds with strong low-frequency content, adjusted sound exposure level (LNE) is calculated from low-frequency sound pressure level L_{LF} by:

LNE =
$$2(L_{LF} - 65) + 55 + 10\log(t/1)$$

= $2 L_{LF} - 75 + 10\log(t/1)$ (Equation D.1 of ANSI S12.9 Part 4)

where L_{LF} is 10 times the logarithm of the ratio of time-mean square sound pressures in the 16, 31.5, and 63-Hz octave bands divided by the square of the reference sound pressure and

t is the time duration of interest, in seconds, over which the low-frequency sound is present.

The factor of 2 in equation (D.1) accounts for the rapid increase in annoyance with sound pressure level at low frequencies. ANSI S12.9 Part 4 states: "Equation (D.1) also accounts for the additional annoyance from rattles that begins when the low-frequency sound pressure level [\mathcal{L}_{LF}] exceeds 75 dB." Later, ANSI S12.9/Part 4 has a contradictory recommendation: "To prevent the likelihood of noise-induced rattles, the low-frequency sound pressure level [\mathcal{L}_{LF}] should be less than 70 dB."

ANSI S12.9 /Part 4 identifies two thresholds: annoyance is minimal when the 16, 31.5 and 63 Hz octave band sound pressure levels are each less than 65 dB and there are no rapidly fluctuations of the low frequency sounds. The second threshold is for increased annoyance which begins when rattles occur, which begins at $L_{\rm LF}$ 70 - 75 dB. Since determination of $L_{\rm LF}$ involves integrating concurrently the sound pressures in the three octave bands, an energy sum of the levels in each of these separate bands results in an upper bound to $L_{\rm LF}$. (The sound pressure level from the summation of these bands will always be less than $L_{\rm LF}$ since the sound pressures are not in phase within these three bands.)

It should be noted that a recent study on low frequency noise from aircraft operations (Hodgdon, Atchley, Bernhard 2007) reported that an expert panel was critical of using this \mathcal{L}_{LF} metric because it had not previously been used to characterize aircraft noise and its reliance on the 16 Hz band since aircraft data does not extend down to 16 Hz and can not be used with the FAA Integrated Noise Model.

The adjustment procedure for low frequency noise to the average annual A-weighted sound pressure level in ANSI S12.9 Part 4 uses a different and more complicated metric and procedure (Equation D.1) than those used for evaluating low frequency noise in rooms contained in ANSI/ASA S12.2. (See section 4.2.3). Since we are evaluating low frequency

noise and not A-weighted levels, we do not recommend using the procedure for adjusting A-weighted levels. Instead we recommend using the following two guidelines from ANSI S12.4 Part 9: a sound pressure level of 65 dB in each of the 16-, 31.5-, and 63 Hz octave bands as an indicator of minimal annoyance, and 70 - 75 dB for the summation of the sound pressure levels from these three bands as an indicator of possible increased annoyance from rattles. This method is conservative since the sum of the levels in the three bands will always be less than \mathcal{L}_{LF} .

4.2.3 ANSI/ASA S12.2-2008

ANSI/ASA S12.2-2008 discusses criteria for evaluating room noise, and has two separate provisions for evaluating low frequency noise: (1) the potential to cause perceptible vibration and rattles, and (2) meeting low frequency portions of room criteria curves.

<u>Vibration and Rattles</u>: Clause 6 and Table 6 of this standard contain limiting values of sound pressure levels for vibrations and rattles from low frequency noise. The frequency range is not defined, but limiting values and discussion relate only to octave-bands with center frequencies of 16, 31 and 63 Hz. This is the same narrow frequency range from low-frequency sounds as in ANSI S12.9/Part 4. Therefore, ANSI S12.9 Part 4 and ANSI/ASA S12.2 are consistent in evaluating and assessing low frequency sounds both for annoyance (interior and exterior measurements) and vibration (interior measurements) by using sound pressure levels only in the 16, 31 and 63 Hz octave-bands.

ANSI/ASA S12.2 presents limiting levels at low frequencies for assessing (a) the probability of *clearly* perceptible acoustically induced vibration and rattles in lightweight wall and ceiling constructions, and (b) the probability of *moderately* perceptible acoustically induced vibration in similar constructions. These 16, 31.5 and 63 Hz octave band sound pressure level values are presented in Table 4.2-1. One set of values is for when "clearly perceptible vibration and rattles" is likely, and a lower set of values is for when "moderately perceptible vibration and rattles" is likely.

Table 4.2-1 Measured interior sound pressure levels for perceptible vibration and rattle in lightweight wall and ceiling structures. [ANSI/ASA S12.2-2008]

	Octave-band center frequency (Hz)					
Condition	16	31.5	63			
Clearly perceptible vibration and rattles likely	75 dB	75 dB	80 dB			
Moderately perceptible vibration and rattles likely	65 dB	65 dB	70 dB			

Since indoor measurements are not always possible, for comparison to outdoor sound levels the indoor criteria from ANSI/ASA S12.2 should be adjusted. Outdoor to indoor low frequency noise reductions have been reported by Sutherland for aircraft and highway noise

for open and closed windows (Sutherland 1978) and by Hubbard for aircraft and wind turbine noise for closed windows (Hubbard 1991). Table 4.2-2 presents the average low frequency octave band noise reductions from outdoor to indoors from these two papers for open and closed windows. Sutherland only reported values down to 63 Hz; whereas Hubbard presented values to less than 10 Hz. The closed window conditions of Hubbard were used to estimate noise reductions less than 63 Hz by applying the difference between values for open and closed windows from Sutherland data at 63 Hz. It should be noted that the attenuation for wind turbines in Hubbard is based on only three homes at two different wind farms, whereas the traffic and aircraft data are for many homes. The wind turbine open window values were obtained from the wind turbine closed window values by subtracting the difference in values between windows closed and open obtained by Sutherland.

Table 4.2-2 Average low frequency octave band noise reductions from outdoor to indoors in dB (based on Sutherland (1978) and Hubbard (1991))

		Octave Band Center Frequency					
Noise Source	Window condition	16 Hz	31.5 Hz	63 Hz			
Average aircraft and traffic sources	Closed windows	16	15	18			
Average aircraft and traffic sources	Open Windows	(11)*	(10)*	12			
Average Wind Turbine	Closed Windows	8	11	14			
Average Wind Turbine	Open Windows	(3)*+	(6)* +	9+			

^{*} No data are available for windows open below 63 Hz octave band. The values for 16 Hz and 31 Hz were obtained by subtracting the difference between the levels for 63 Hz closed and open conditions to the 16 and 31 Hz closed values.

To be conservative, we use the open window case instead of closed windows. To be further conservative, we use the wind turbine data (adjusted to open windows), which is based on only three homes. However, it should be noted that it is possible for some homes to have some slight amplification at low frequencies with windows open due to possible room resonances. Applying the outdoor to indoor attenuations for wind turbine sources with windows open given in the last row of Table 4.2-2 to the ANSI/ASA S12.2 indoor sound pressure levels in Table 4.2-1 yields the *equivalent* outdoor sound pressure levels that are consistent with the indoor criteria and are presented in Table 4.2-3.

⁺ Used in this report to determine equivalent outdoor criteria from indoor criteria

Table 4.2-3 *Equivalent* outdoor sound pressure levels for perceptible vibration and rattle in lightweight wall and ceiling structures based on Tables 4.2-1 and 4.2-2 above for wind turbines.

	Octave-band center frequency (Hz)					
Condition	16	31.5	63			
Clearly perceptible vibration and rattles likely	78 dB	81 dB	89 dB			
Moderately perceptible vibration and rattles likely	68 dB	71 dB	79 dB			

Room Criteria Curves: ANSI/ASA S12.2 has three primary methods for evaluating the suitability of noise within rooms: a survey method - A-weighted sound levels, an engineering method - noise criteria (NC) curves and a method for evaluating low-frequency fluctuating noise using room noise criteria (RNC) curves. "The RNC method should be used to determine noise ratings when the noise from HVAC systems at low frequencies is *loud* and is suspected of containing *sizeable fluctuations or surging.*" [emphasis added] The NC curves are appropriate to evaluate low frequency noise from wind turbines in homes since wind turbine noise does not have significant fluctuating low frequency noise sufficient to warrant using RNC curves and since A-weighted sound levels do not adequately determine if there are low frequency problems. [ANSI/ASA S12.2. section 5.3 gives procedures for determining if there are large fluctuations of low frequency noise.]

Annex C.2 of this standard contains recommendations for bedrooms, which are the most stringent rooms in homes: NC and RNC criteria curve between 25 and 30. The recommended NC and RNC criteria for schools and private rooms in hospitals are the same. The values of the sound pressure levels in the 16 - 250 Hz octave bands for NC curves 25 and 30 are shown in Table 4.2-4.

Table 4.2-4 Octave band sound pressure levels for noise criteria curves NC-25 and NC-30. [From Table 1 of ANSI/ASA S12.2]

	Octave-band-center frequency in Hz							
	16	31.5	63	125	250			
NC-25	80	65	54	44	37			
NC-30	81	68	57	48	41			

ANSI/ASA S12.2 also presents a method to determine if the levels below 500 Hz octave band are too high in relation to the levels in the mid-frequencies which could create a condition of "spectrum imbalance". The method for this evaluation is:

- ◆ Calculate the speech interference level (SIL) for the measured spectrum. [SIL is the arithmetic average of the sound pressure levels in the 500, 1000, 2000 and 4000 Hz octave bands.] Select the NC curve equal to the SIL value.
- Plot the measured spectra and the NC curve equal to the SIL value on the same graph and determine the differences between the two curves in the octave bands below 500 Hz.
- Estimate the likelihood that the excess low-frequency levels will annoy occupants of the space using Table 4.2-5.

Table 4.2-5 Measured sound pressure level deviations from an NC (SIL) curve that may lead to serious complaints [From ANSI/ASA S12.2:2008].

	Measured Spectrum – NC(SIL), dB						
Octave-band frequency, Hz =>	31.5	63	125	250			
Possible serious dissatisfaction	*	6 - 9	6 - 9	6 - 9			
Likely serious dissatisfaction	*	>9	>9	>9			

^{*}Insufficient data available to evaluate

4.3 Other Criteria

4.3.1 World Health Organization (WHO)

No specific low frequency noise criteria are proposed by the WHO. The Guidelines for Community Noise report (WHO, 1999) mentions that if the difference between dBC and dBA is greater than 10 decibels, then a frequency analysis should be performed to determine if there is a low frequency issue. A document prepared for the World Health Organization states that "there is no reliable evidence that infrasounds below the hearing threshold produce physiological or psychological effects. Infrasounds slightly above detection threshold may cause perceptual effects but these are of the same character as for 'normal' sounds. Reactions caused by extremely intense levels of infrasound can resemble those of mild stress reaction and may include bizarre auditory sensations, describable as pulsation and flutter" [Berglund (1995) p. 41]

4.3.2 The UK Department for Environment, Food, and Rural Affairs (DEFRA)

The report prepared by the University of Salford for the UK Department for Environment, Food, and Rural Affairs (DEFRA) on low frequency noise proposed one-third octave band sound pressure level L_{eq} criteria and procedures for assessing low frequency noise [DEFRA (2005)]. The guidelines are based on complaints of disturbance from low frequency sounds and are intended to be used by Environmental Health Officers. Reports by Hayes (2006) and others refer to the proposed criteria as "DEFRA criteria." Tables 4.3-1 and 4.3-2 present

the DEFRA criteria for assessment of low frequency noise measured indoors. The criteria are "based on 5 dB below the ISO 226 (2003) average threshold of audibility for steady [low frequency] sounds." However, the DEFRA criteria are at 5 dB lower than ISO 226 only at 20 - 31.5 Hz; at higher frequencies the criteria are equal to the Swedish criteria which are higher levels than ISO 226 less 5 dB. For frequencies lower than 20 Hz, DEFRA uses the thresholds from Watanabe and Moeller (1990) less 5 dB. In developing the DEFRA guidelines, The University of Salford reviewed and considered existing low frequency noise criteria from several European countries.

The DEFRA criteria are based on measurements in an unoccupied room. Hayes Mackenzie (2006) noted that measurements should be made with windows closed; however, we conservatively used windows open conditions for our assessment. If the low frequency sound is "steady" then the criteria may be relaxed by 5 dB. A low frequency noise is considered steady if either of the conditions a) or b) below is met in the third octave band which exceeds the criteria by the greatest margin:

a) L_{10} - L_{90} < 5dB

b) the rate of change of sound pressure level (Fast time weighting) is less than 10 dB per second

Applying indoor to outdoor one-third octave band transfer functions for open windows (from analysis in Sutherland (1978) and Hubbard (1991) yields *equivalent* one-third octave band sound pressure level proposed DEFRA criteria for outdoor sound levels. Table 4.3-1 presents both the indoor DEFRA proposed criteria and equivalent proposed criteria for outdoors for non-steady low-frequency sounds. Table 4.3-2 presents the DEFRA proposed criteria for a steady low frequency sound.

Table 4.3-1 DEFRA proposed criteria for the assessment of low frequency noise disturbance: indoor and equivalent outdoor Leq one-third sound pressure levels for non-steady low frequency sounds. [DEFRA (2005)]

		One-Third Octave Band Center Frequency, Hz											
Location	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
Indoor Leq, dB	92	87	83	74	64	56	49	43	42	40	38	36	34
Equivalent Outdoor Leq, dB	94	89	86	78	68.5	61	56	51	51	49	47	45	43

Table 4.3-2 DEFRA criteria for the assessment of low frequency noise disturbance: *indoor* and *equivalent outdoor Leq* one-third sound pressure levels for *steady* low frequency sounds. [DEFRA (2005)]

		One-Third Octave Band Center Frequency, Hz											
Location	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
Indoor Leq, dB	97	92	88	79	69	61	54	48	47	45	43	41	39
Equivalent Outdoor*Leq, dB	99	94	91	83	73.5	66	61	56	56	54	52	50	48

^{*} With windows open

4.3.3 C-weighted minus A-weighted (Lpc- LpA)

Leventhall (2003) and others indicate that the difference in C-weighted and A-weighted sound pressure levels can be a predictor of annoyance. Leventhall states that if $(L_{PC} - L_{PA})$ is greater than 20 dB there is "a potential for a low frequency noise problem." He further states that $(L_{PC} - L_{PA})$ cannot be a predictor of annoyance but is a simple indicator that further analysis may be needed. This is due in part to the fact that the low frequency noise may be inaudible even if $(L_{PC} - L_{PA})$ is greater than 20 dB.

4.3.4 Threshold of hearing

ISO 226:2003 gives one-third octave band threshold of hearing down to 20 Hz. Watanabe and Moeller (1990) have extended these to 10 Hz and lower, and the values are reported in Moeller and Pedersen (2004). Denmark has established low frequency noise criteria based on audibility. The Danish criteria are "based on hearing thresholds for the 10% most sensitive people in an ontologically unselected population aged 50-60 years. These 10% thresholds are typically about 4-5 dB lower than the average threshold for ontologically normal young adults (18-25 years) as given in ISO 226." [DEFRA (2005)]. Other reports indicate that the standard deviation of these thresholds is also about 5 dB. Table 4.3-3 presents one-third octave band threshold of hearing according to ISO 226 and Watanabe and Moeller. The second row in Table 4.3-3 presents the values that are 5 dB less than the threshold.

Table 4.3-3 Threshold of audibility from ISO 226 and Watanabe and Moeller (1990)

		One-Third Octave band center frequency, Hz															
	4	5	6.3	8	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
Threshold	107	105	102	100	97	92	88	79	69	60	51	44	38	32	27	22	18
Threshold - 5 dB	102	100	97	95	92	87	83	74	64	55	46	39	33	27	22	17	13

The average threshold of hearing values in Table 4.3-3 are also shown in Figure 3.1-1.

4.3.5 Ground-Borne Vibration

ANSI S2.71-1983 (formerly ANSI S3.29-1983) presents recommendations for magnitudes of ground-borne vibration which humans will perceive and possibly react to within buildings. A basic rating is given for the most stringent conditions, which correspond to the approximate threshold of perception of the most sensitive humans. From the base rating, multiplication factors should be applied according to the location of the receiver; for continuous sources of vibration in residences at nighttime, the multiplication factor is 1.0 – 1.4.

ANSI S2.71-1983 presents one-third octave band acceleration or velocity ratings for z-axis, and x-, y-axis vibrations. For spaces in which the occupants may be sitting, standing, or lying at various times, the standard recommends using a combined axis rating which is obtained from the most stringent rating for each axis. Measurements in each of the 3 axes should be compared to the combined axis rating. Table 4.3-4 presents the base response velocity ratings for the combined axis. The velocity ratings are for root-mean-square (RMS) values.

Table 4.3-4 Base response one-third octave band RMS velocity ratings for the three biodynamic vibration axes and combined axis (From ANSI S2.71-1983 (R2006)

One-Third Octave band center frequency, Hz		Velocity (RMS), m/s	
	z axis	x, y axis	Combined axis
1	1.6 x 10 ⁻³	5.7 x 10 ⁻⁴	5.7 x 10 ⁻⁴
1.25	1.1 x 10 ⁻³	4.6 x 10 ⁻⁴	4.6 x 10 ⁻⁴
1.6	8.0 x 10 ⁻⁴	3.6 x 10 ⁻⁴	3.6 x 10 ⁻⁴
2	5.6 x 10 ⁻⁴	2.9 x 10 ⁻⁴	2.9 x 10 ⁻⁴
2.5	4.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	2.4 x 10 ⁻⁴
3.15	2.9 x 10 ⁻⁴	2.9 x 10 ⁻⁴	2.1 x 10 ⁻⁴
4	2.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.7 x 10 ⁻⁴
5	1.6 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.4 x 10 ⁻⁴
6.3	1.3 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.2 x 10 ⁻⁴
8	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴
10	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴
12.5	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴
16	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴
20	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴
25	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴
31.5	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴
40	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴
50	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴
63	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴
80	1.0 x 10 ⁻⁴	2.9 x 10 ⁻⁴	1.0 x 10 ⁻⁴

5.0 LITERATURE REVIEW

Epsilon performed an extensive literature search of over 100 scientific papers, technical reports and summary reports on low frequency sound and infrasound - hearing, effects, measurement, and criteria. The following paragraphs briefly summarize the findings from some of these papers and reports.

5.1 H. Moeller and C. S. Pedersen (2004)

Moeller and Pedersen (2004) present a comprehensive summary on hearing and non-auditory perception of sound at low and infrasonic regions, some of which has been cited in sections 3.1.1, 3.1.2, and 3.1.3 of this report.

5.2 Leventhall (2003)

Leventhall presents an excellent study on low frequency noise from all sources and its effects. The report presents criteria in place at that time. Included are figures and data relating cause and effects.

5.3 Leventhall (2006)

Leventhall reviewed data and allegations on alleged problems from low frequency noise and infrasound from wind turbines. Leventhall concluded the following: "It has been shown that there is insignificant infrasound from wind turbines and that there is normally little low frequency noise." "Turbulent air inflow conditions cause enhanced levels of low frequency noise, which may be disturbing, but the overriding noise from wind turbines is the fluctuating audible swish, mistakenly referred to as "infrasound" or "low frequency noise". "Infrasound from wind turbines is below the audible threshold and of no consequence". Other studies have shown that wind turbine generated infrasound levels are below threshold of perception and threshold of feeling and body reaction.

5.4 Delta (2008)

The Danish Energy Authority project on "low frequency noise from large wind turbines" comprises a series of investigations in the effort to give increased knowledge on low frequency noise from wind turbines. One of the conclusions of the study is that wind turbines do not emit audible infrasound, with levels that are "far below the hearing threshold." Audible low frequency sound may occur both indoors and outdoors, "but the levels in general are close to the hearing and/or masking level." "In general the noise in the critical band up to 100 Hz is below both thresholds". The summary report notes that for road traffic noise (in the vicinity of roads) the low frequency noise levels are higher [than wind turbine] both indoors and outdoors.

5.5 Hayes McKenzie (2006)

Hayes McKenzie performed a study for the UK Department of Trade & Industry (DTI) to investigate complaints of low frequency noise that came from three of the five farms with complaints out of 126 wind farms in the UK. The study concluded that:

- Infrasound associated with modern wind turbines is not a source which will result in noise levels that are audible or which may be injurious to the health of a wind farm neighbor.
- Low frequency noise was measureable on a few occasions, but below DEFRA criteria. Wind turbine noise may result in indoor noise levels within a home that is just above the threshold of audibility; however, it was lower than that of local road traffic noise.
- The common cause of the complaints was not associated with low frequency noise but the occasional audible modulation of aerodynamic noise, especially at night. Data collected indoors showed that the higher frequency modulated noise levels were insufficient to awaken the residents at the three sights; however, once awake, this noise could result in difficulties in returning to sleep.

The UK Department of Trade and Industry, which is now the UK Department for Business Enterprise and Regulatory Reform (BERR), summarized the Hayes McKenzie report: "The report concluded that there is no evidence of health effects arising from infrasound or low frequency noise generated by wind turbines." [BERR (2007)]

5.6 Howe (2006)

Howe performed extensive studies on wind turbines and infrasound and concluded that infrasound was not an issue for modern wind turbine installations – "while infrasound can be generated by wind turbines, it is concluded that infrasound is not of concern to the health of residences located nearby." Since then Gastmeier and Howe (2008) investigated an additional situation involving the alleged "perception of infrasound by individual." In this additional case, the measured indoor infrasound was at least 30 dB below the perception threshold given by Watanabe and Moeller (1990) as presented in Table 4.3-3. Gastmeier and Howe (2008) also performed vibration measurements at the residence and nearest wind turbine, and concluded that the vibration levels were well below the perception limits discussed in ISO 2631-2.

5.7 Branco (2004)

Branco and other Portuguese researchers have studied possible physiological affects associated with high amplitude low frequency noise and have labeled these alleged effects as "Vibroacoustic Disease" (VAD). "Vibroacoustic disease (VAD) is a whole-body, systemic pathology, characterized by the abnormal proliferation of extra-cellular matrices, and caused by excessive exposure to low frequency noise." Hayes (2007, 2008) concluded that levels from wind farms are not likely to cause VAD after comparing noise levels from alleged VAD cases to noise levels from wind turbines in homes of complainers. Noise levels in aircraft in which VAD has been hypothesized are considerably higher than wind turbine noise levels. Hayes also concluded that it is "unlikely that symptoms will result through induced internal vibration from incident wind farm noise." [Hayes (2007)] Other studies have found no VAD indicators in environmental sound that have been alleged by VAD proponents. [ERG (2001)]

5.8 French National Academy of Medicine (2006)

French National Academy of Medicine recommended "as a precaution construction should be suspended for wind turbines with a capacity exceeding 2.5 MW located within 1500 m of homes." [emphasis added] However, this precaution is not because of definitive health issues but because:

- sound levels one km from some wind turbine installations "occasionally exceed allowable limits" for France (note that the allowable limits are long term averages)
- French prediction tools for assessment did not take into account sound levels created with wind speeds greater than 5 m/s.
- Wind turbine noise has been compared to aircraft noise (even though the sound levels of wind turbine noise are significantly lower), and exposure to high level aircraft noise "involves neurobiological reactions associated with an increased frequency of hypertension and cardiovascular illness. Unfortunately, no such study has been done near wind turbines." [Gueniot (2006)].

In March 2008, the French Agency for Environmental and Occupational Health Safety (AFSSET) published a report on "the health impacts of noise generated by wind turbines", commissioned by the Ministries of Health and Environment in June 2006 following the report of the French National Academy of Medicine in March 2006. [AFSSET (2008)] The AFSSET study recommends that one does not define a fixed distance between wind farms and homes, but rather to model the acoustic impact of the project on a case-by-case basis. One of the conclusions of the AFSSET report is: "The analysis of available data shows: The absence of identified direct health consequences concerning the auditory effects or specific effects usually associated with exposure to low frequencies at high level." ("L'analyse des données disponibles met en évidence: L'absence de conséquences sanitaires directes recensées en ce qui concerne les effets auditifs, ou les effets spécifiques généralement attachés à l'exposition à des basses fréquences à niveau élevé.")

6.0 REPRESENTATIVE WIND TURBINES

At the direction of NextEra, two types of utility-scale wind turbines were studied:

- ◆ General Electric (GE) 1.5sle (1.5 MW), and
- ♦ Siemens SWT-2.3-93 (2.3 MW).

Typical hub height for these wind turbines is 80 meters above ground level (AGL).

Sound levels for these wind turbine generators (WTGs) vary as a function of wind speed from cut-in wind speed to maximum sound level. Table 6.0-1 below lists the reference sound power levels of each WTG as a function of wind speed at 10 meters AGL as provided by the manufacturer. This is in conformance with the sound level standard for wind turbines [IEC 61400-11].

Table 6.0-1 Sound power levels as a Function of Wind Speed (dBA)

Wind Speed at 10 meters AGL (m/s)	GE 1.5 sle 80 m hub height; 77 m rotor diameter	Siemens SWT-2.3-93 80 m hub height; 92.4 m rotor diameter
3	< 96	ND
4	<96	ND
5	99.1	99
6	103.0	103.4
7	≤104	104.9
8	≤104	105.1
9	≤104	105.0
10	≤104	105.0

ND = No Data available

Each wind turbine manufacturer applied the uncertainty factor K of 2 dBA to guarantee the turbine's sound power level. (According to IEC TS 61400-14, K accounts for both measurement variations and production variation.) The results in Section 8.0 use the manufacturer's guaranteed value, that is, 2 dBA above the levels in Table 6.0-1.

One-third octave band sound power level data have also been provided for each turbine reflective of the highest A-weighted level (typically a wind speed of 8 m/s or greater at 10 m AGL). These data are reference (not guaranteed) data, and are summarized below in Table 6.0-2. Cut-in wind speed for the GE 1.5 sle wind turbine is 3.5 m/s while the Siemens wind turbine has a cut-in wind speed of 4 m/s. The last two rows in Table 6.0-2 contain the overall A-weighted sound power levels from Table 6.0-1 and the guaranteed values.

Table 6.0-2 One-Third Octave Sound Power Levels at 8 m/s (un-weighted, dB)

1/3 Octave Band Center Frequency, Hz	GE 1.5 sle 80 m hub height; 77 m rotor diameter	Siemens SWT-2.3-93 80 m hub height; 92.4 m rotor diameter
25	ND	109.0
31.5	ND	105.7
40	ND	105.3
50	106.4	105.3
63	106.1	104.8
80	105.1	104.7
100	103.9	104.8
125	102.8	105.3
160	105.8	103.2
200	101.6	103.7
250	100.6	105.0
315	100.6	102.5
400	99.1	100.2
500	97.0	97.8
630	95.1	95.8
800	94.8	93.5
1000	92.8	92.7
1250	91.7	90.6
1600	90.5	88.2
2000	88.4	87.1
2500	85.8	85.6
3150	83.6	83.9
4000	81.2	82.1
5000	78.1	80.8
6300	76.0	79.9
8000	72.4	79.4
10000	73.3	80.0
Overall - Reference	104 dBA	105 dBA
Guaranteed	106 dBA	107 dBA

ND = No data provided.

7.0 FIELD PROGRAM

Real-world data were collected from operating wind turbines to compare to the low frequency noise guidelines and criteria discussed previously in Section 4.0. These data sets consisted of outdoor measurements at various reference distances, and concurrent indoor/outdoor measurements at residences within the wind farm. Epsilon determined all means, methods, and the testing protocol without interference or direction from NextEra. No limitations were placed on Epsilon by NextEra with respect to the testing protocol or upon the analysis methods.

7.1 GE 1.5sle and Siemens SWT-2.3-93

Field measurements were conducted in order to measure sound levels at operating wind turbines, and compare them to the guidelines and criteria discussed in this report. NextEra provided access to the Horse Hollow Wind Farm in Taylor and Nolan Counties, Texas in November 2008 to collect data on the GE 1.5 sle and Siemens SWT-2.3-93 wind turbines. The portion of the wind farm used for testing is relatively flat with no significant terrain. The land around the wind turbines is rural and primarily used for agriculture and cattle grazing. The siting of the sound level measurement locations was chosen to minimize local noise sources except the wind turbines and the wind itself.

Two noise consultants collected sound level and wind speed data over the course of one week under a variety of operational conditions. Weather conditions were dry the entire week with ground level winds ranging from calm to 28 mph (1-minute average). In order to minimize confounding factors, the data collection tried to focus on periods of maximum sound levels from the wind turbines (moderate to high hub height winds) and light to moderate ground level winds.

Ground level (2 meters AGL) wind speed and direction were measured continuously at one representative location. Wind speeds near hub height were also measured continuously using the permanent meteorological towers maintained by the wind farm.

A series of simultaneous interior and exterior sound level measurements were made at four houses owned by participating landowners within the wind farm. Two sets were made of the GE WTGs, and two sets were made of the Siemens WTGs. Data were collected with both windows open and windows closed. Due to the necessity of coordinating with the homeowners in advance, and reasonable restrictions of time of day to enter their homes, the interior/exterior measurement data sets do not always represent ideal conditions. However, enough data were collected to compare to the criteria and draw conclusions on low frequency noise.

Sound level measurements were also made simultaneously at two reference distances from a string of wind turbines under a variety of wind conditions. Using the manufacturer's sound level data discussed in Section 6.0, calculations of the sound pressure levels as a function of distance in flat terrain were made to aid in deciding where to collect data in the field. Based on this analysis, two distances from the nearest wind turbine were selected 1000 feet and 1500 feet - and were then used where possible during the field program.

Distances much larger than 1,500 feet were not practical since an adjacent turbine string could be closer and affect the measurements, or would put the measurements beyond the boundaries of the wind farm property owners. Brief background sound level measurements were conducted several times during the program whereby the Horse Hollow Wind Farm operators were able to shutdown the nearby WTGs for a brief (20 minutes) period. This was done in real time using cell phone communication.

All the sound level measurements described above were attended by the noise consultants. One series of unattended overnight measurements was made at two locations for approximately 15 hours to capture a larger data set. One measurement was set up approximately 1,000 feet from a GE 1.5 sle WTG and the other was set up approximately 1,000 feet from a Siemens WTG. The location was chosen based on the current wind direction forecast so that the sound level equipment would be downwind for the majority of the monitoring period. By doing this, the program was able to capture periods of strong hub-height winds and moderate to low ground-level winds.

Ground-borne vibration measurements were made within the Horse Hollow Wind Farm. Measurements were made 400 feet and 1000 feet downwind from both GE 1.5 sle and Siemens 2.3 MW WTGs under full operation. In addition, background vibration measurements were made with the WTGs briefly shutdown.

7.2 Measurement Equipment

Ground level wind speed and direction were measured with a HOBO H21-002 micro weather station (Onset Computer Corporation). The data were sampled every three seconds and logged every one minute. All sound levels were measured using two Norsonic Model Nor140 precision sound analyzers, equipped with a Norsonic-1209 Type 1 Preamplifier, a Norsonic-1225 half-inch microphone and a 7-inch Aco-Pacific untreated foam windscreen Model WS7. The instrumentation meets the "Type 1 - Precision" requirements set forth in American National Standards Institute (ANSI) S1.4 for acoustical measuring devices. The microphone was tripod-mounted at a height of five feet above ground. The measurements included simultaneous collection of broadband (A-weighted) and one-third-octave band data (0.4 hertz to 20,000 hertz bands). Sound level data were primarily logged in 10minute intervals to be consistent with the wind farm's Supervisory Control And Data Acquisition (SCADA) system which provides power output (kW) in 10-minute increments. A few sound level measurements were logged using 20-miute intervals. The meters were calibrated and certified as accurate to standards set by the National Institute of Standards and Technology. These calibrations were conducted by an independent laboratory within the past 12 months.

The ground-borne vibration measurements were made using an Instantel Minimate Plus vibration and overpressure monitor. A triaxial geophone inserted in the ground measured the particle velocity (PPV). Each measurement was 20 seconds in duration and all data were stored in memory for later retrieval.

8.0 RESULTS AND COMPARISON TO CRITERIA

Results from the field program are organized by wind turbine type. For each wind turbine type, results are presented per location type (outdoor or indoor) with respect to applicable criteria. Results are presented for 1,000 feet from the nearest wind turbine. Data were also collected at 1,500 feet from the nearest wind turbine which showed lower sound levels. Therefore, wind turbines that met the criteria at 1,000 feet also met it at 1,500 feet. Data were collected under both high turbine output and moderate turbine output conditions, and low ground-level wind speeds (defined as sound power levels 2 or 3 dBA less than the maximum sound power levels). The sound level data under the moderate conditions were equivalent to or lower than the high turbine output scenarios, thus confirming the conclusions from the high output cases. A-weighted sound power levels presented in this section (used to describe turbine operation) were estimated from the actual measured power output (kW) of the wind turbines and the sound power levels as a function of wind speed presented in Table 6.0-1 plus an adjustment factor of 2 dBA (correction from reference values to guaranteed values).

Outdoor measurements are compared to criteria for audibility, for UK DEFRA disturbance using equivalent outdoor levels, for rattle and annoyance criteria as contained in ANSI S12.9 Part 4, and for perceptible vibration using equivalent outdoor levels from ANSI/ASA S12.2. Indoor measurements are compared to criteria for audibility, for UK DEFRA disturbance, and for suitability of bedrooms, hospitals and schools and perceptible vibration from ANSI/ASA S12.2.

8.0.1 Audibility

The threshold of audibility criteria discussed in section 4.3.4 is used to evaluate wind turbine sound levels. The audibility of wind turbines both outdoors and indoors was examined.

8.0.2 UK DEFRA Disturbance Criteria

The DEFRA one-third octave band sound pressure level L_{eq} criteria and procedures for assessing disturbance from low frequency noise (see section 4.3.2) were examined. The indoor criteria and equivalent outdoor criteria were compared to measured low frequency noise from wind turbines.

8.0.3 Perceptible Vibration, Rattle and Annoyance – Outdoor Measurements

The ANSI/ASA S12.2 interior perceptible vibration criteria were converted to equivalent outdoor criteria as discussed in section 4.2.3 and compared to the measured low frequency noise from wind turbines. In addition, measured data were compared to ANSI S12.9 Part 4 low frequency sound levels for minimal annoyance and for the threshold for beginning of rattles as described in section 4.2.2.

8.0.4 ANSI/ASA S12.2 Low Frequency Criteria – Indoor Measurements

The ANSI/ASA S12.2 interior perceptible vibration criteria and low frequency portions of the room criteria for evaluating the suitability of noises in bedrooms, hospitals and schools were compared to indoor measurements of low frequency noise from wind turbines. (See section 4.2.3.)

8.1 Siemens SWT-2.3-93

8.1.1 Outdoor Measurements - Siemens SWT-2.3-93

Several periods of high wind turbine output and relatively low ground wind speed (which minimized effects of wind noise) were measured outdoors approximately 1,000 feet from the closest Siemens WTG. This site was actually part of a string of 15 WTGS, four of which were within 2,000 feet of the monitoring location. The sound level data presented herein include contributions from all wind turbines as measured by the recording equipment. The key operational and meteorological parameters during these measurements are listed in Table 8.1-1

Table 8.1-1 Summary of Operational Parameters – Siemens SWT-2.3-93 (Outdoor)

Parameter	Sample #34	Sample #39
Distance to nearest WTG	1,000 feet	1,000 feet
Time of day	22:00-22:10	22:50-23:00
WTG power output	1,847 kW	1,608 kW
Sound power	107 dBA	106.8 dBA
Measured wind speed @ 2 m	3.3 m/s	3.4 m/s
LAeq	49.4 dBA	49.6 dBA
L _A 90	48.4 dBA	48.6 dBA
LCeq	63.5 dBC	63.2 dBC

8.1.1.1 Outdoor Audibility

Figure 8.1-1 plots the one-third octave band sound levels ($L_{\rm eq}$) for both samples of high output conditions. The results show that infrasound is inaudible to even the most sensitive people 1,000 feet from these wind turbines (more than 20 dB below the median thresholds of hearing). Low frequency sound above 40 Hz may be audible depending on background sound levels.

8.1.1.2 UK DEFRA Disturbance Criteria – Outdoor measurements

Figure 8.1-2 plots the one-third octave band sound levels (L_{eq}) for both samples of high output conditions. The low frequency sound was "steady" according to DEFRA procedures, and the results show that all outdoor equivalent DEFRA disturbance criteria are met.

8.1.1.3 Perceptible Vibration, Rattle and Annoyance – Outdoor Measurements

Figure 8.1-3 plots the 16, 31.5, and 63 Hz octave band sound levels ($L_{\rm eq}$) for both samples of high output conditions. The results show that all outdoor equivalent ANSI/ASA S12.2 perceptible vibration criteria are met. The low frequency sound levels are below the ANSI S12.9 Part 4 thresholds for the beginning of rattles (16, 31.5, 63 Hz total less than 70 dB), and the 31.5 and 63 Hz sound levels are below the level of 65 dB identified for minimal annoyance in ANSI S12.9 Part 4, and the 16 Hz sound level is within 1.5 dB of this level, which is an insignificant increase since the levels were not rapidly fluctuating.

8.1.2 Indoor Measurements - Siemens SWT-2.3-93

Simultaneous outdoor and indoor measurements were made at two residences at different locations within the wind farm to determine indoor audibility of low frequency noise from Siemens WTGs. In each house measurements were made in a room facing the wind turbines, and were made with either window open or closed. These residences are designated Homes "A" and "D" and were approximately 1,000 feet from the closest Siemens WTG. Both homes were near a string of multiple WTGS, four of which were within 2,000 feet of the house. The sound level data presented herein include contributions from all wind turbines as measured by the recording equipment. The key operational and meteorological parameters during these measurements are listed in Table 8.1-2.

Table 8.1-2 Summary of Operational Parameters – Siemens SWT-2.3-93 (Indoor)

Parameter	Home "A" (closed / open)	Home "D" (closed / open)	
Distance to nearest WTG	1,060 feet	920 feet	
Time of day	7:39-7:49 / 7:51-8:01	16:16-16:26 / 16:30 -16:40	
WTG power output	1,884 kW / 1564 kW	2,301 kW / 2299 kW	
Sound power	107 dBA / 106.7 dBA	107 dBA / 107 dBA	
Measured wind speed @ 2 m	3.2 m/s / 3.7 m/s	9.6 m/s / 8.8 m/s	
L _{Aeq}	33.8 dBA /38.1 dBA	35.0 dBA / 36.7 dBA	
La90	28.1 dBA / 36.8 dBA	29.6 dBA / 31.2 dBA	
LCeq	54.7 dBC / 57.1 dBC	52.8 dBC / 52.5 dBC	

8.1.2.1 Indoor Audibility

Figure 8.1-4a plots the indoor one-third octave band sound levels ($L_{\rm eq}$) for Home "A", and Figure 8.1-4b plots the indoor one-third octave band sound levels for Home "D". The results show that infrasound is inaudible to even the most sensitive people 1,000 feet from these wind turbines with the windows open or closed (more than 20 dB below the median thresholds of hearing). Low frequency sound at or above 50 Hz may be audible depending on background sound levels.

8.1.2.2 UK DEFRA Disturbance Criteria – Indoor Measurements

Figure 8.1-5a plots the indoor one-third octave band sound levels (\mathcal{L}_{eq}) for Home "A". The low frequency sound was "steady" according to DEFRA procedures, and the results show that all outdoor equivalent DEFRA disturbance criteria are met. Figure 8.1-5b plots the indoor one-third octave band sound levels (\mathcal{L}_{eq}) for Home "D". According to DEFRA procedures, the low frequency sound was not "steady" and therefore the data were compared to both criteria. The results show the DEFRA disturbance criteria were met for steady low frequency sounds, the DEFRA criteria were met for unsteady low frequency sounds except for the 125 Hz band, which was within 1 dB, which is an insignificant difference.

8.1.2.3 ANSI/ASA S12.2 Low Frequency Criteria – Indoor Measurements

Figure 8.1-6a plots the indoor 16 Hz to 125 Hz octave band sound levels (L_{eq}) for Home "A", and Figure 8.1-6b plots the indoor 16 Hz to 125 Hz octave band sound levels (L_{eq}) for Home "D". The results show the ANSI/ASA S12.2 low frequency criteria were easily met for both windows open and closed scenarios. The ANSI/ASA S12.2 low frequency criteria for bedrooms, classrooms and hospitals were met, the spectrum was balanced, and the criteria for moderately perceptible vibrations in light-weight walls and ceilings were also met.

8.2 GE 1.5sle

8.2.1 Outdoor Measurements - GE 1.5sle

Several periods of high wind turbine output and relatively low ground wind speed (which minimized effects of wind noise) were measured outdoors approximately 1,000 feet from the closest GE 1.5 sle WTG. This site was actually part of a string of more than 30 WTGS, four of which were within 2,000 feet of the monitoring location. The sound level data presented herein include contributions from all wind turbines as measured by the recording equipment. The key operational and meteorological parameters for these measurements are listed in Table 8.2-1.

Table 8.2-1 Summary of Operational Parameters – GE 1.5sle (Outdoor)

Parameter	Sample #46	Sample #51
Distance to nearest WTG	1,000 feet	1,000 feet
Time of day	23:10-23:20	00:00-00:10
WTG power output	1,293 kW	1,109 kW
Sound power	106 dBA	106 dBA
Measured wind speed @ 2 m	4.1 m/s	3.3 m/s
LAeq	50.2 dBA	50.7 dBA
L _{A90}	49.2 dBA	49.7 dBA
LCeq	62.5 dBC	62.8 dBC

8.2.1.1 Outdoor Audibility

Figure 8.2-1 plots the one-third octave band sound levels ($L_{\rm eq}$) for both samples of high output conditions. The results show that infrasound is inaudible to even the most sensitive people 1,000 feet from these wind turbines (more than 20 dB below the median thresholds of hearing). Low frequency sound at and above 31.5 - 40 Hz may be audible depending on background sound levels.

8.2.1.2 UK DEFRA Disturbance Criteria – Outdoor measurements

Figure 8.2-2 plots the one-third octave band sound levels (L_{eq}) for both samples of high output conditions. The low frequency sound was "steady" according to DEFRA procedures, and the results show the low frequency sound meet or are within 1 dB of outdoor equivalent DEFRA disturbance criteria.

8.2.1.3 Perceptible Vibration, Rattle and Annoyance – Outdoor Measurements

Figure 8.2-3 plots the 16, 31.5, and 63 Hz octave band sound levels ($L_{\rm eq}$) for both samples of high output conditions. The results show that all outdoor equivalent ANSI/ASA S12.2 perceptible vibration criteria are met. The low frequency sound levels are below the ANSI S12.9 Part 4 thresholds for the beginning of rattles (16, 31.5, 63 Hz total less than 70 dB), and the 16, 31.5, 63 Hz sound levels are below the level of 65 dB identified for minimal annoyance in ANSI S12.9 Part 4.

8.2.2 Indoor Measurements - GE 1.5sle

Simultaneous outdoor and indoor measurements were made at two residences at different locations within the wind farm to determine indoor audibility of low frequency noise from GE 1.5sle WTGs. In each house, measurements were made in a room facing the wind turbines, and were made with window either open or closed. These residences are designated Homes "B" and "C" and were approximately 1,000 feet from the closest Siemens WTG. Operational conditions were maximum turbine noise and high ground

winds at Home "B", and within 1.5 dBA of maximum turbine noise and high ground level winds at Home "C". Home "B" was near a string of multiple WTGs, four of which were within 2,000 feet of the house, while Home "C" was at the end of a string of WTGs, two of which were within 2,000 feet of the house. The sound level data presented herein include contributions from all wind turbines as measured by the recording equipment. The key operational and meteorological parameters during these measurements are listed in Table 8.2-2.

Table 8.2-2 Summary of Operational Parameters – GE 1.5sle (Indoor)

Parameter	Home "B" (closed / open)	Home "C" (closed / open)	
Distance to nearest WTG	950 feet	1,025 feet	
Time of day	9:29-9:39 / 9:40-9:50	11:49-11:59 / 12:00-12:10	
WTG power output	1,017 kW / 896 kW	651 kW / 632 kW	
Sound power	106 dBA / 105.8 dBA	104.7 dBA / 104.6 dBA	
Measured wind speed @ 2 m	6.2 m/s / 6.8 m/s	6.4 m/s / 5.9 m/s	
Laeq	27.1 dBA / 36.0 dBA	33.6 dBA / 39.8 dBA	
La90	23.5 dBA / 33.7 dBA	27.6 dBA / 34.2 dBA	
LCeq	47.1 dBC / 54.4 dBC	50.6 dBC / 55.1 dBC	

8.2.2.1 Indoor Audibility

Figure 8.2-4a plots the indoor one-third octave band sound levels ($L_{\rm eq}$) for Home "B", and Figure 8.2-4b plots the indoor one-third octave band sound levels for Home "C". The results show that infrasound is inaudible to even the most sensitive people 1,000 feet from these wind turbines with the windows open or closed (more than 20 dB below the median thresholds of hearing). Low frequency sound at and above 63 Hz may be audible depending on background sound levels.

8.2.2.2 UK DEFRA Disturbance Criteria – Indoor Measurements

Figure 8.2-5a plots the indoor one-third octave band sound levels (L_{eq}) for Home "B", and Figure 8.2-5b plots the indoor one-third octave band sound levels (L_{eq}) for Home "C". The results show the DEFRA disturbance criteria were met for steady and non-steady low frequency sounds.

8.2.2.3 ANSI/ASA S12.2 Low Frequency Criteria – Indoor Measurements

Figure 8.2-6a plots the indoor 16 Hz to 125 Hz octave band sound levels (\mathcal{L}_{eq}) for Home "B", and Figure 8.2-6b plots the indoor 16 Hz to 125 Hz octave band sound levels (\mathcal{L}_{eq}) for Home "C". The results show the ANSI/ASA S12.2 low frequency criteria were met for both windows open and closed scenarios. The ANSI/ASA S12.2 low frequency criteria for

bedrooms, classrooms and hospitals were met, the spectrum was balanced, and the criteria for moderately perceptible vibrations in light-weight walls and ceilings were also met.

8.3 Noise Reduction from Outdoor to Indoor

Simultaneous outdoor and indoor measurements were made at four residences within the Horse Hollow Wind Farm to determine noise reductions of the homes for comparison to that used in the determination of equivalent outdoor criteria for indoor criteria, such as ANSI/ASA S12.2 and DEFRA. Indoor measurements were made with windows open and closed. Tables 8.1-2 and 8.2-2 list the conditions of measurement for these houses.

The outdoor sound level data at Home "D" was heavily influenced by high ground winds – the measured levels were higher due to the effect of the wind on the microphone or the measurement of wind effect noise; therefore the data from Home "D" was not used in the comparison of noise reduction, since it would over estimate actual noise reduction.

Figures 8.3-1a and 8.3-1b present the measured one-third octave band noise reduction for the three homes with windows closed and open, respectively. Also presented in these same figures are the one-third octave noise reductions used in Section 4 of this report to obtain equivalent outdoor criteria for the indoor DEFRA criteria ("Table 4.3-1 Noise Reduction - Open Window"). It can be seen that for the window closed condition in Figure 8.3-1a, the measured noise reductions for all houses were greater than that used in our analysis as described in Section 4. For the open window case, the average of the three homes has a greater noise reduction than used in Section 4 and all houses at all frequencies have higher values with one minor exception. Only Home "A" at 25 Hz had a lower noise reduction (3dB), and this difference is not critical since the measured indoor sounds at 25 Hz at each of these home was significantly lower than the indoor DEFRA criteria. Furthermore, the outdoor measurements for both Siemens and GE wind turbines at 1000 feet under high output/high noise levels met the equivalent outdoor DEFRA criteria at 25 Hz.

Table 8.3-1 presents the measured octave band noise reduction for the three homes with windows closed and open, respectively. Also presented in Table 8.3-1 are the octave band noise reductions used in Table 4.2-2 of this report to obtain equivalent outdoor criteria for the indoor ANSI/ASA S12.2 criteria for perceptible vibration. It can be seen that for the window closed condition, the measured noise reductions for all houses were greater than that used in our analysis as described in Section 4. For the open window case, the average of the three homes has a greater noise reduction than used in Section 4 and all houses at all frequencies have higher values with one minor exception. Only Home "A" at 31 Hz (which contains the 25 Hz one-third octave band) had a lower noise reduction (3dB), and this difference is not critical since the measured indoor sounds at 31 Hz at each of these homes was significantly lower than the indoor ANSI/ASA S12.2 criteria. Furthermore, the outdoor measurements for both Siemens and GE wind turbines at 1000 feet under high output/high noise levels met the equivalent outdoor ANSI/ASA S12.2 criteria at 31 Hz.

Table 8.3-1 Summary of Octave Band Noise Reduction – Interior Measurements

Home	Wind Turbine	Windows	16 Hz	31.5 Hz	63 Hz
Α	Siemens SWT-2-3-93	Closed	5	6	16
Α	Siemens SWT-2-3-93	Open	4	3	12
В	GE 1.5 sle	Closed	20	22	22
В	GE 1.5 sle	Open	13	17	18
С	GE 1.5 sle	Closed	13	14	19
С	GE 1.5 sle	Open	8	13	17
Table 4	1.2-2 Noise Reduction	Open	3	6	9

8.4 Ground-Borne Vibration

Seven sets of ground-borne vibration measurements were made from Siemens 2.3 and GE 1.5sle wind turbines. The maximum ground-borne vibration RMS particle velocities were 0.071 mm/second (0.0028 inches/second) in the 8 Hz one-third octave band. This was measured 1000 feet downwind from a GE 1.5sle WTG under maximum power output and high wind at the ground. The background ground-borne vibration RMS particle velocity at the same location approximately 20 minutes beforehand was 0.085 mm/sec. Both of these measurements meet ANSI S2.71 recommendations for perceptible vibration in residences during night time hours. Soil conditions were soft earth representative of an active agricultural use. These vibration levels are nearly three orders of magnitude below the level of 0.75 inches/second set to prevent damage to residential structures. No perceptible vibration was felt from operation of the wind turbines. Measurements at the other sites and as close as 400 feet were significantly lower than the above measurements under high wind conditions.

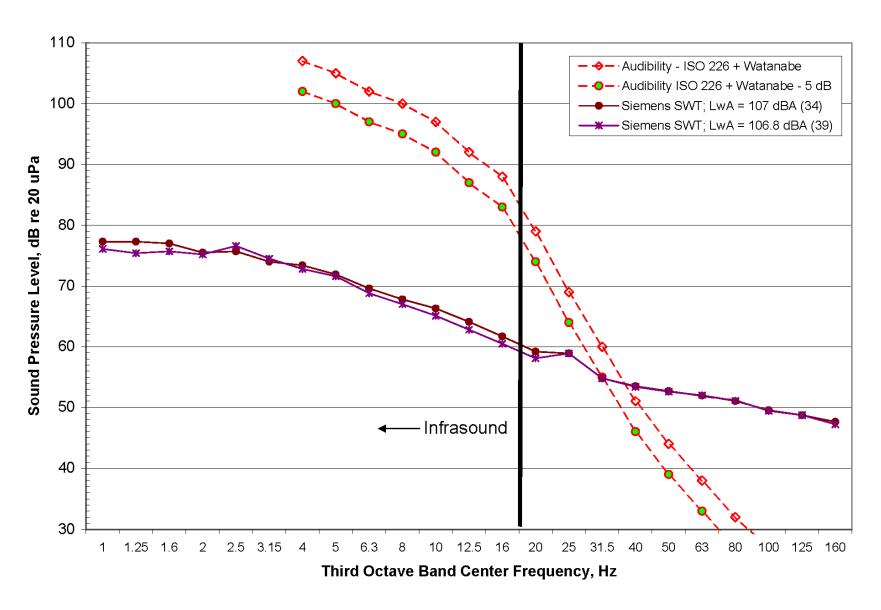
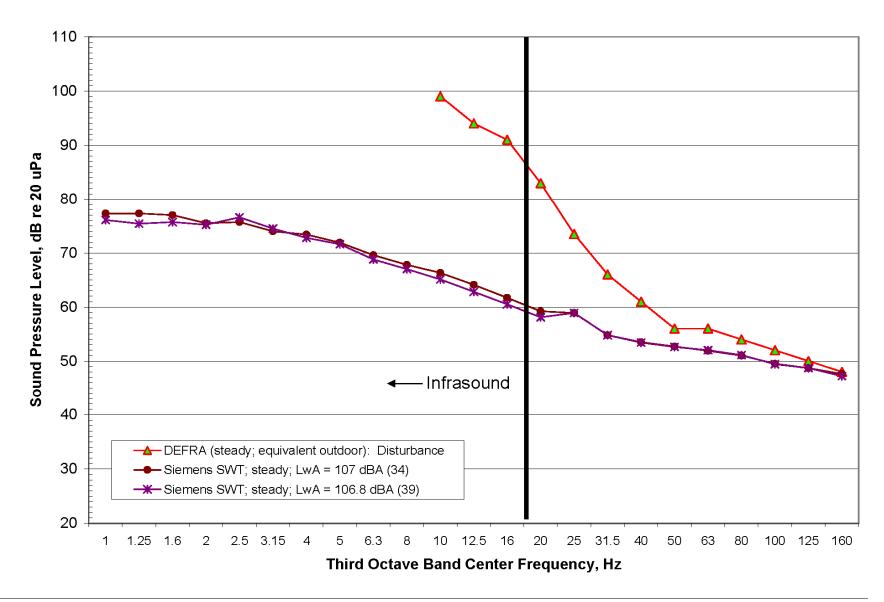



Figure 8.1-1 Siemens SWT-2.3-93 Wind Turbine Outdoor Sound Levels at 1000 feet compared to Audibility Criteria

Figure 8.1-2 Siemens SWT-2.3-93 Wind Turbine Outdoor Sound Levels at 1000 feet compared to outdoor equivalent DEFRA Criteria

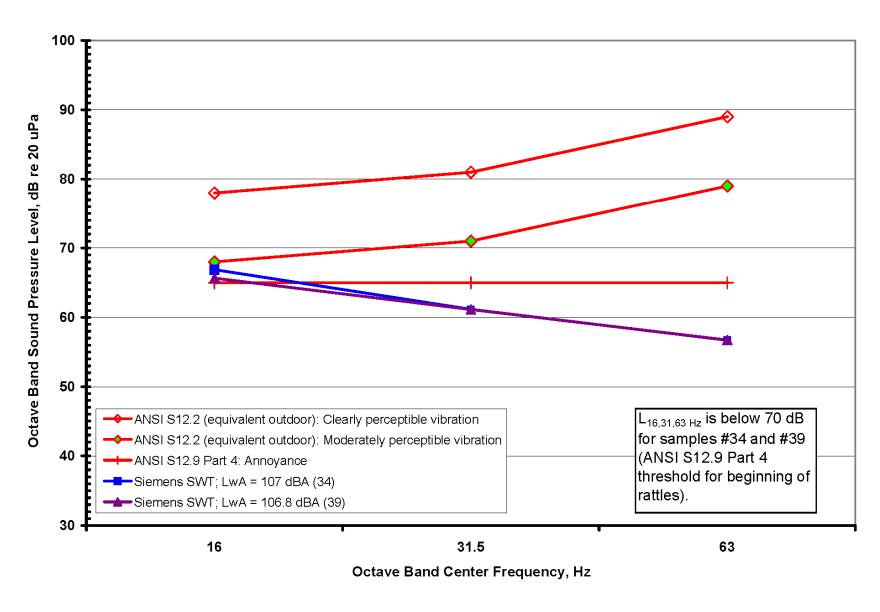


Figure 8.1-3 Siemens SWT-2.3-93 Wind Turbine Outdoor Sound Levels at 1000 feet compared to ANSI Criteria

Figure 8.1-4a Siemens SWT-2.3-93 Wind Turbine Indoor Sound Levels at 1060 feet compared to Audibility Criteria (Home "A")

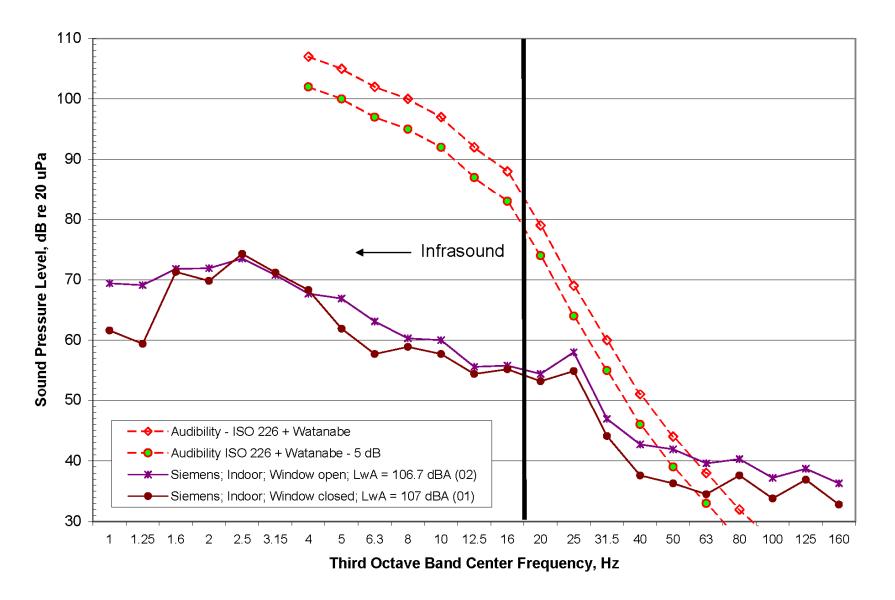
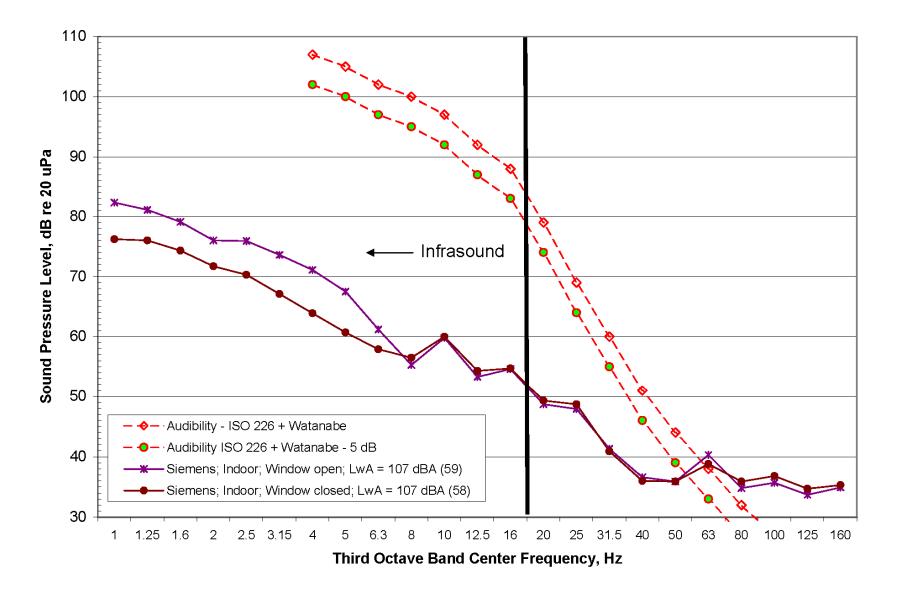



Figure 8.1-4b Siemens SWT-2.3-93 Wind Turbine Indoor Sound Levels at 920 feet compared to Audibility Criteria (Home "D")

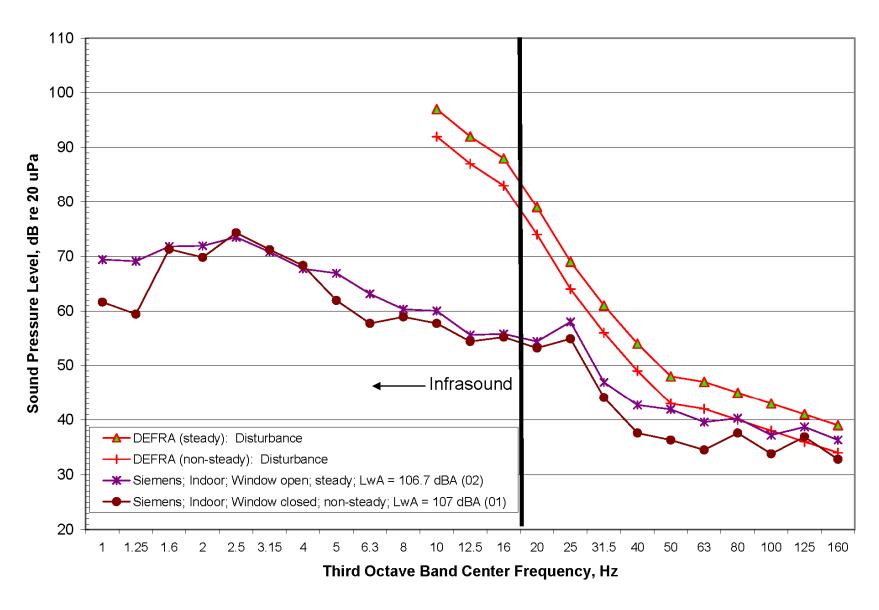


Figure 8.1-5a Siemens SWT-2.3-93 Wind Turbine Indoor Sound Levels at 1060 feet compared to DEFRA Criteria (Home "A")

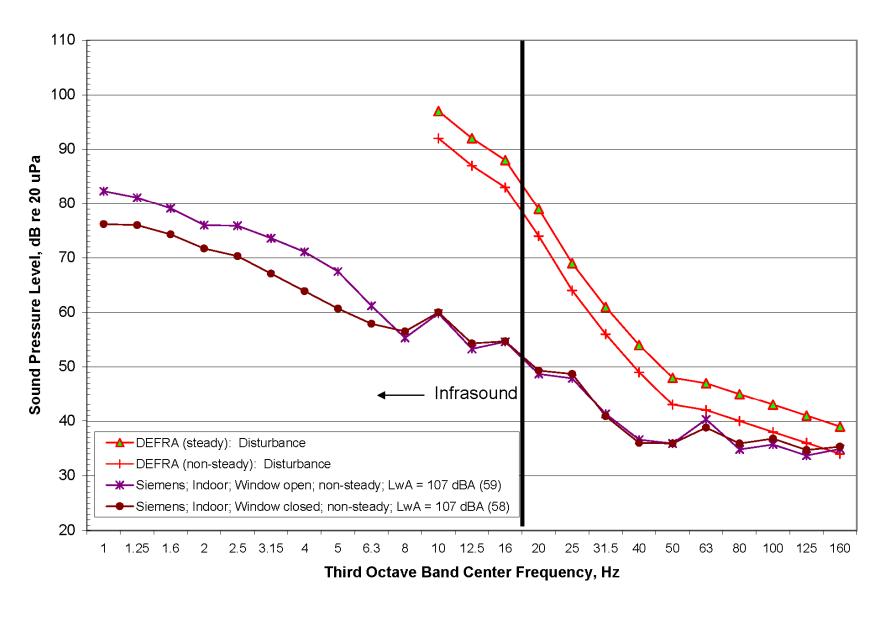


Figure 8.1-5b Siemens SWT-2.3-93 Wind Turbine Indoor Sound Levels at 920 feet compared to DEFRA Criteria (Home "D")

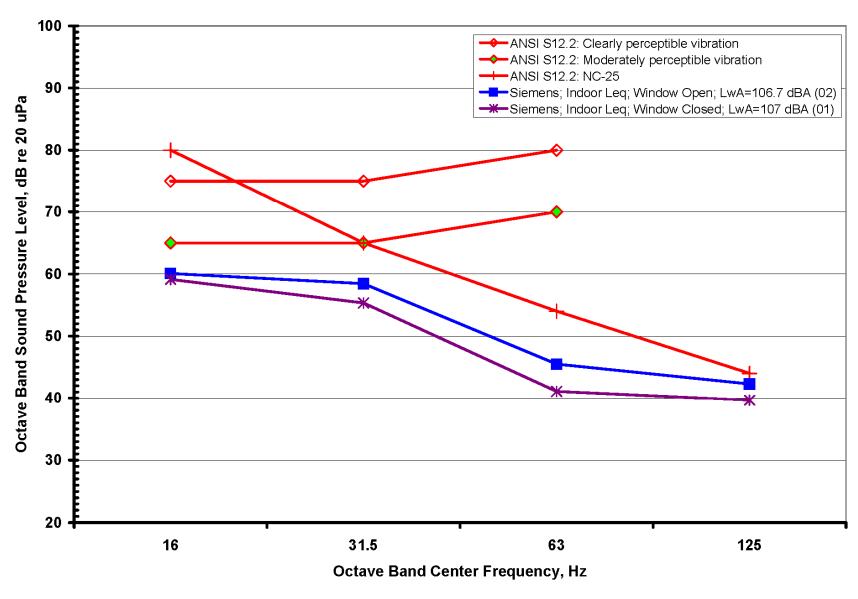


Figure 8.1-6a Siemens SWT-2.3-93 Wind Turbine Indoor Sound Levels at 1060 feet compared to ANSI 12.2 Criteria (Home "A")

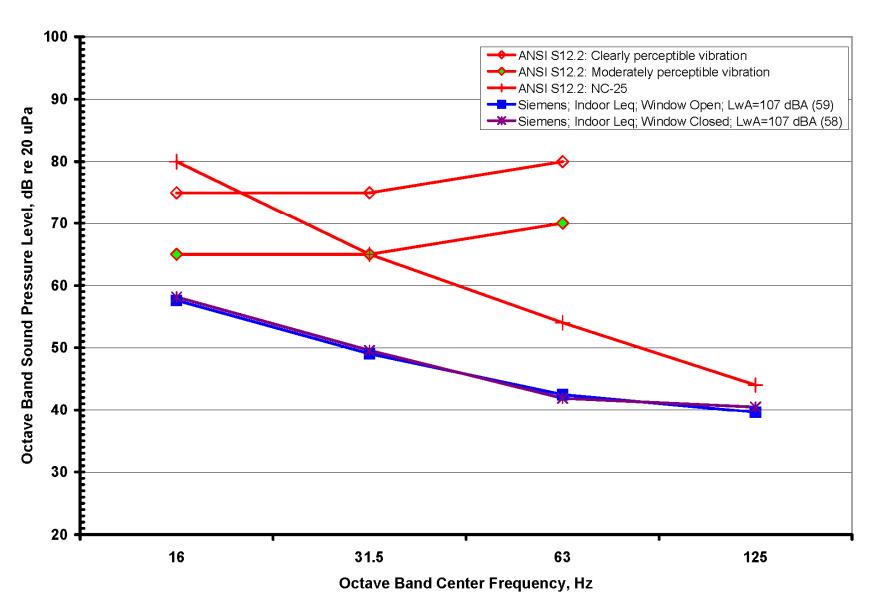


Figure 8.1-6b Siemens SWT-2.3-93 Wind Turbine Indoor Sound Levels at 920 feet compared to ANSI 12.2 Criteria (Home "D")

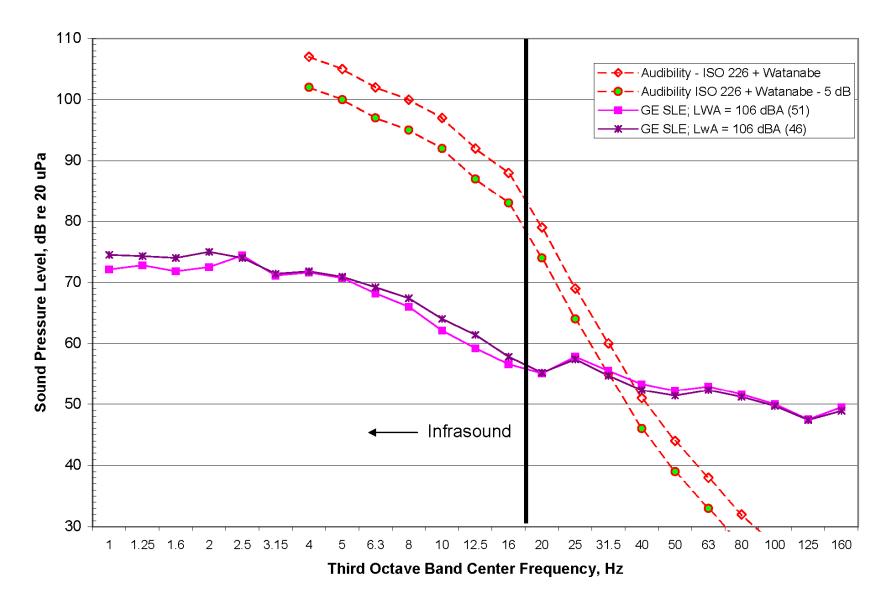
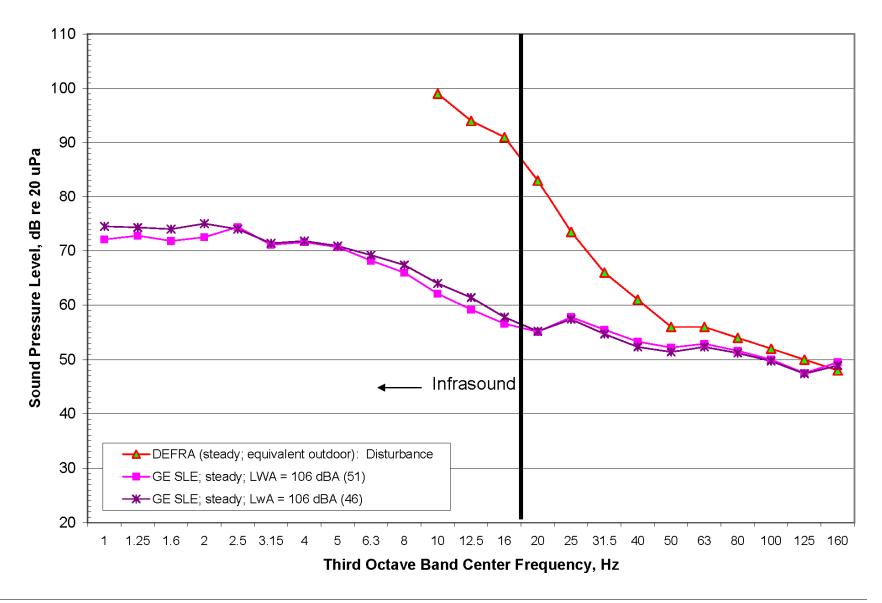



Figure 8.2-1 GE 1.5sle Wind Turbine Outdoor Sound Levels at 1000 feet compared to Audibility Criteria

Figure 8.2-2 GE 1.5sle Wind Turbine Outdoor Sound Levels at 1000 feet compared to outdoor equivalent DEFRA Criteria

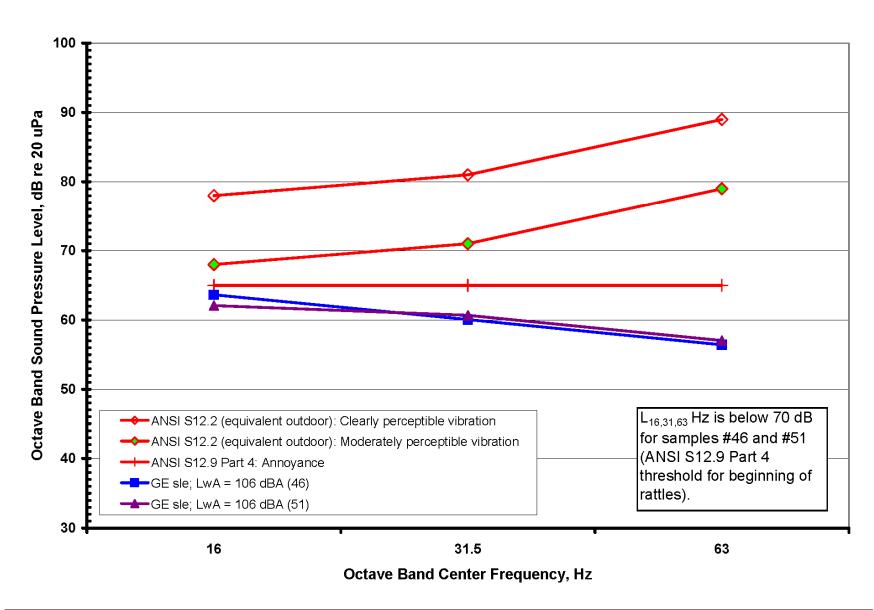


Figure 8.2-3 GE 1.5sle Wind Turbine Outdoor Sound Levels at 1000 feet compared to ANSI Criteria

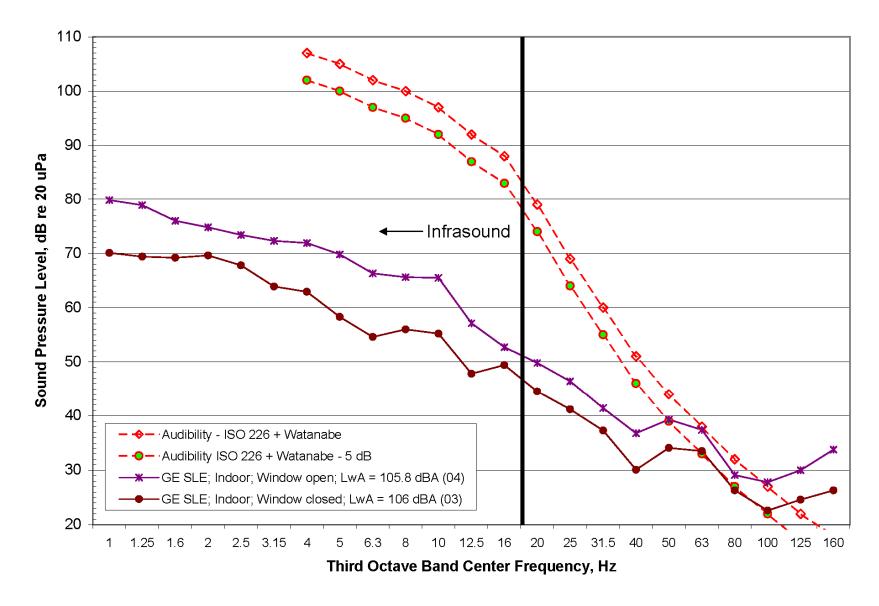


Figure 8.2-4a GE 1.5sle Wind Turbine Indoor Sound Levels at 950 feet compared to Audibility Criteria (Home "B")

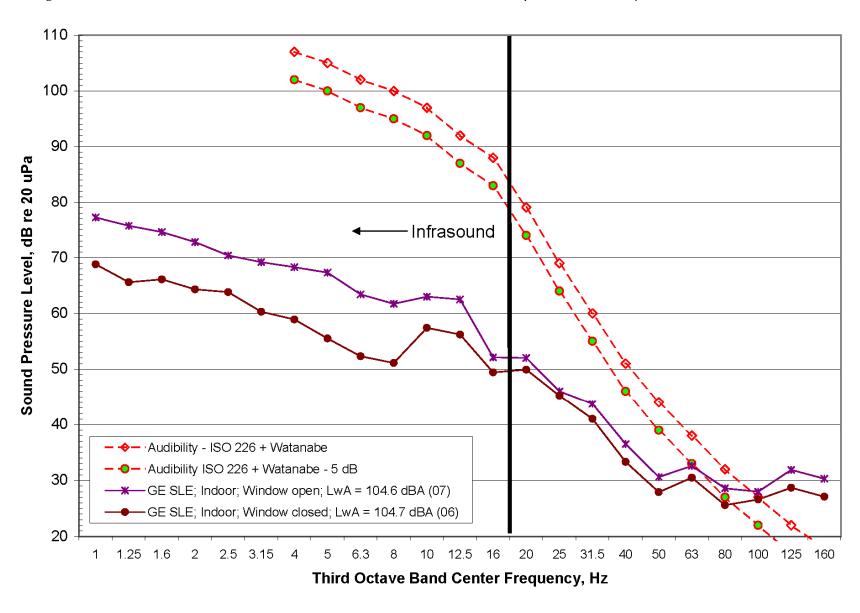


Figure 8.2-4b GE 1.5sle Wind Turbine Indoor Sound Levels at 1025 feet compared to Audibility Criteria (Home "C")

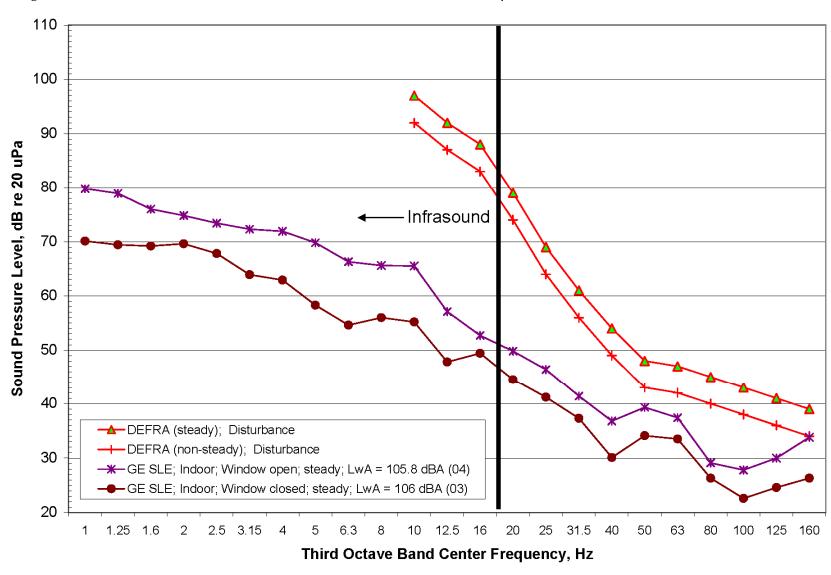


Figure 8.2-5a GE 1.5sle Wind Turbine Indoor Sound Levels at 950 feet compared to DEFRA Criteria (Home "B")

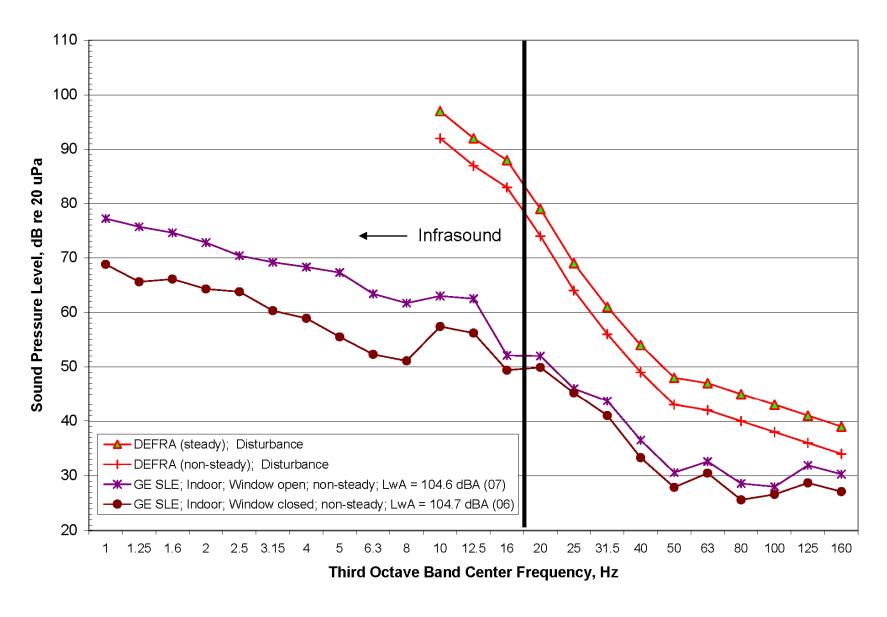


Figure 8.2-5b GE 1.5sle Wind Turbine Indoor Sound Levels at 1025 feet compared to DEFRA Criteria (Home "C")

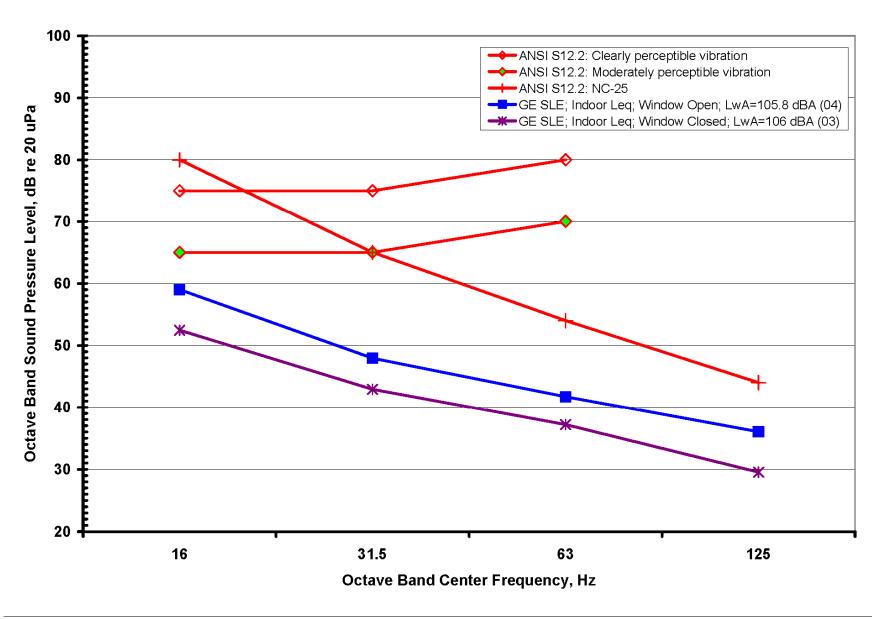


Figure 8.2-6a GE 1.5 sle Wind Turbine Indoor Sound Levels at 950 feet compared to ANSI 12.2 Criteria (Home "B")

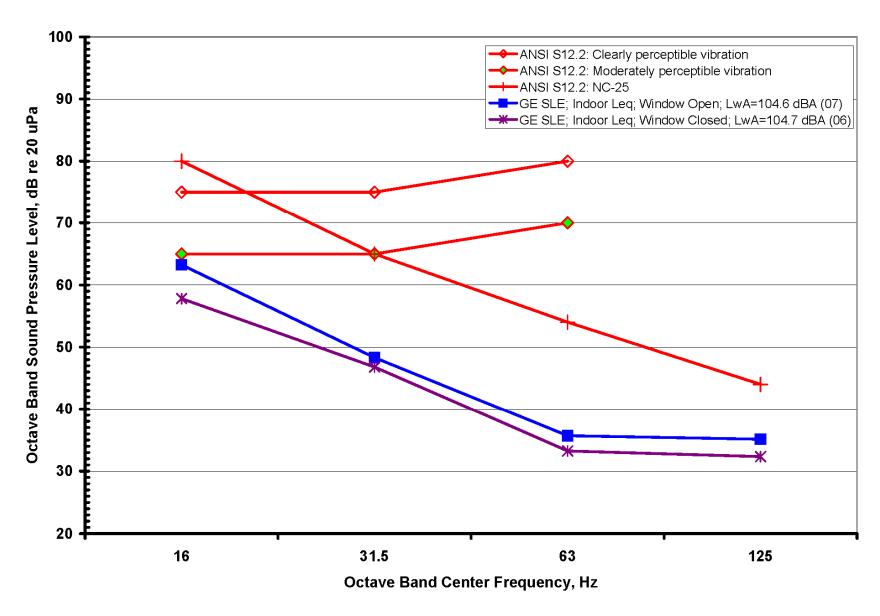


Figure 8.2-6b GE 1.5 sle Wind Turbine Indoor Sound Levels at 1025 feet compared to ANSI 12.2 Criteria (Home "C")

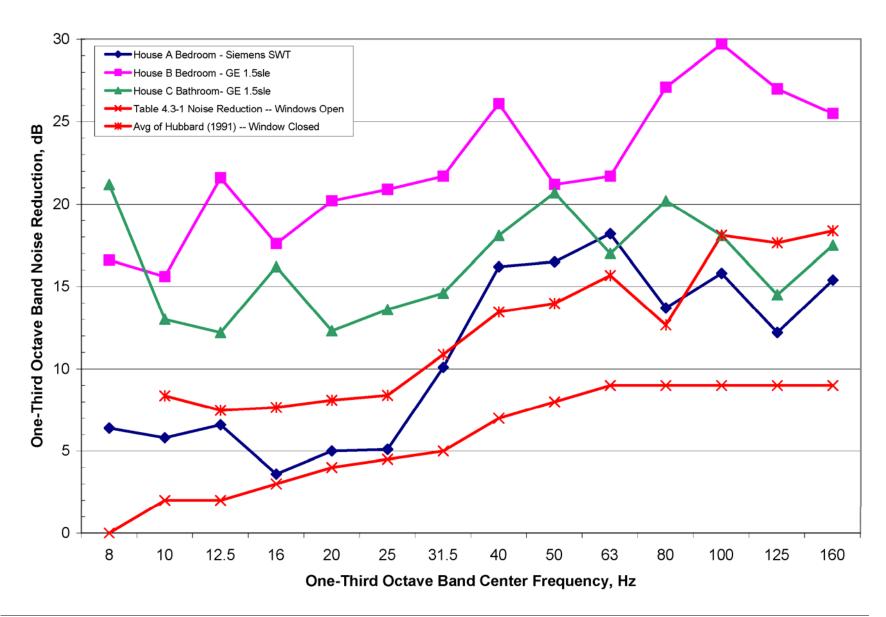


Figure 8.3-1a One-Third Octave Band Interior Noise Reduction – Windows Closed

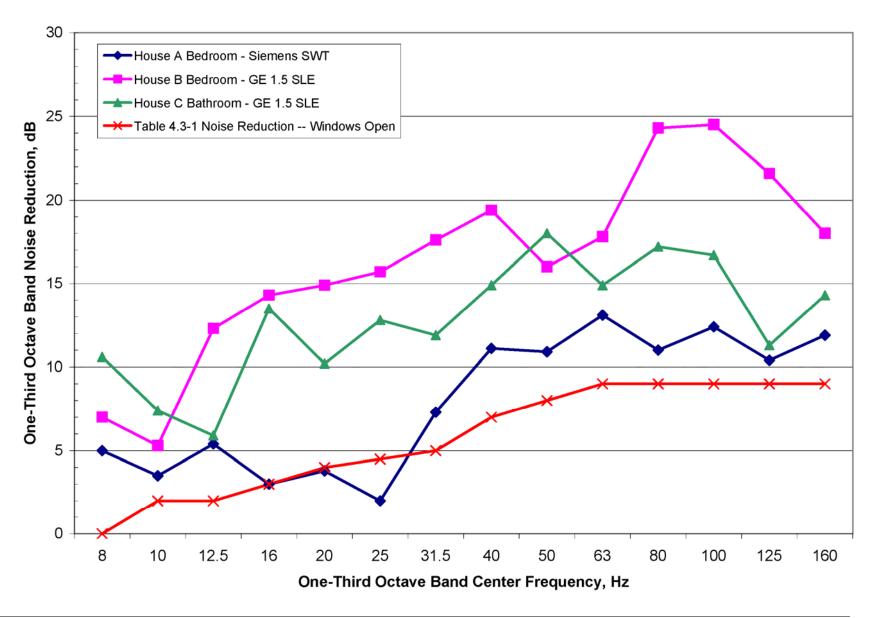


Figure 8.3-1b One-Third Octave Band Interior Noise Reduction – Windows Open

9.0 CONCLUSION

Siemens SWT 2.93-93 and GE 1.5sle wind turbines at maximum noise at a distance more than 1000 feet from the nearest residence do not pose a low frequency noise or infrasound problem. At this distance the wind farms:

- meet ANSI/ASA S12.2 indoor levels for low frequency sound for bedrooms, classrooms and hospitals;
- meet ANSI/ASA S12.2 indoor levels for moderately perceptible vibrations in lightweight walls and ceilings;
- meet ANSI S12.9 Part 4 thresholds for annoyance and beginning of rattles;
- meet UK DEFRA disturbance based guidelines;
- have no audible infrasound to the most sensitive listeners;
- might have slightly audible low frequency noise at frequencies at 50 Hz and above depending on other sources of low frequency noises in homes, such as refrigerators or external traffic or airplanes; and
- meet ANSI \$2.71 recommendations for perceptible vibration in residences during night time hours.

In accordance with the above findings, and in conjunction with our extensive literature search of scientific papers and reports, there should be no adverse public health effects from infrasound or low frequency noise at distances greater than 1000 feet from the wind turbine types measured by Epsilon: GE 1.5sle and Siemens SWT 2.3-93.

10.0 BIBLIOGRAPHY

AFSSET, French Agency for Environmental and Occupational Health Safety (AFSSET), "Impacts sanitaires du bruit généré par les éoliennes" (The health impacts of noise generated by wind turbines"), March 2008, available at

http://www.afsset.fr/upload/bibliotheque/978899576914371931356311364123/bruit eoliennes vdef.pdf

ANSI S2.71-1983 (R2006), formerly ANSI S3.29-1983 American National Standard Guide to the Evaluation of Human Exposure to Vibration in Buildings, Acoustical Society of America, New York, 2006

ANSI/ASA S12.2-2008 American National Standard Criteria for Evaluating Room Noise, Acoustical Society of America, New York, 2008

ANSI S12.9-2005/Part 4 American National Standard Quantities and Procedures for Description and Measurement of Environmental Sound – Part 4: Noise Assessment and Prediction of Long-term Community Response, Acoustical Society of America, 2005

ANSI/ASA S12.9-2007/Part 5 American National Standard Quantities and Procedures for Description and Measurement of Environmental Sound – Part 5: Sound Level Descriptors for Determination of Compatible Land Use, Acoustical Society of America, 2007

Berglund, B. and Lindvall, T. "Community Noise", Center for Sensory Research, Stockholm, Sweden, 1995, prepared for the World Health Organization

BERR – UK Department for Business Enterprise and Regulatory Reform (BERR), "Government statement regarding the findings of the Salford University report into Aerodynamic Modulation of Wind Turbine Noise", 2007, http://www.berr.gov.uk/files/file40571.pdf

Branco, N. A. A. Castelo, and Alves-Pereira, M. "Vibroacoustic Disease", Noise & Health, v 6, issue 23, p 3-20, 2004

DEFRA, "Proposed criteria for the assessment of low frequency noise disturbance", University of Salford report, UK Department for Environment, Food, and Rural Affairs, DEFRA NANR45 Project Report, 2005.

DELTA, "Low Frequency Noise from Large Wind Turbines. Summary and Conclusions on Measurements and Methods", EFP-06 Project prepared for Danish Energy Authority, report AV 140/08, 2008

Eastern Research Group (ERG), "Expert Review of the Vieques Heart Study Summary Report for the Vieques Heart Study Expert Panel Review", prepared for The (U.S.) Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, 2001, available at: http://www.atsdr.cdc.gov/news/viequesheartreport.html.

French National Academy of Medicine, "Le retentissement du fonctionnement des éoliennes sur la santé de l'homme" ("Repercussions of wind turbine operations on human health"), March 2006, available at http://ventdubocage.net/documentsoriginaux/sante/eoliennes.pdf.

Gastmeier, William, J., and Howe, Brian, "Recent Studies of Infrasound from Industrial Sources", Canadian Acoustics, v 36, No.3, 2008

Gueniot, Chantal, "Wind Turbines: The Academy Cautious", *Panorama du Médecin*, March 2006

Hayes McKenzie Partnership Ltd., "The Measurement of Low Frequency Noise at Three UK Wind Farms," UK Department of Trade and Industry (DTI) contract number: W/45/00656/00/00, 2006. http://www.berr.gov.uk/files/file31270.pdf

Hayes, Malcolm, "Low Frequency and Infrasound Noise Immission from Wind Farms and the potential for Vibro-Acoustic disease", presented at Wind Turbine Noise Conference, Lyon, France, 2007

Hayes, Malcolm, "Low Frequency and Infrasound Noise Immission from Wind Farms and the potential for Vibro-Acoustic disease", presented Wind Farm Noise: Armagh, 2008

Hodgdon, Kathleen K., Atchley, Anthony A., Bernhard, Robert J., "Low Frequency Noise Study", Final report, PARTNER Low Frequency Study Group, Report No. PARTNER-COE-2007-001, April 2007 (Revised August 2007), (Funded by U.S. FAA under Contract FAA 03-C-NE-PSU)

Howe, Brian, "Wind Turbines and Infrasound", prepared for the Canadian Wind Energy Association by Howe Gastmeier Chapnik Limited (HGC Engineering) (2006)

Hubbard, H.H., and Shepherd, K. P., "Aeroacoustics of large wind turbines", *Journal of the Acoustical Society of America*, 89 (6), June 1991

IEC 61400-11:2002, "Wind Turbines – Part 11: Acoustic noise measurement techniques", International Electrotechnical Commission, Geneva, Switzerland, 2002

IEC TS 61400-14:2005, "Wind Turbines – Part 14: Declaration of apparent sound power level and tonality values", International Electrotechnical Commission, Geneva, Switzerland, 2005

ISO 226:2003, "Acoustics - Normal equal-loudness-level contours", International Standards Organization, Geneva 2003

ISO 2631-2:2003, "Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration – Part 2: Vibration in buildings (1 Hz to 80 Hz)", International Standards Organization, Geneva 2003

Leventhall, Geoff, "A Review of Published Research on Low Frequency Noise and its Effects", a report for DEFRA, May 2003.

Leventhall, Geoff, "Infrasound from Wind Turbines – Fact, Fiction or Deception", *Canadian Acoustics*, Vol 34, No. 2, 2006.

Moeller, H. and C. S. Pedersen. "Hearing at Low and Infrasonic Frequencies", *Noise & Health* 2004, v6 issue 23, 37-57, 2004.

Snow D.J., 1997. Low frequency noise and vibrations measurements at a modern wind farm, ETSU W/13/00392/REP.

Styles, P., England, R., Stimpson, I., Toon, S., Bowers, D., Hayes, M. A Detailed Study Of The Propagation And Modelling Of The Effects Of Low Frequency Seismic Vibration And Infrasound From Wind Turbines. First International Meeting on Wind Turbine Noise: Perspectives for Control: Berlin 17-18 October 2005.

Watanabe, and Moeller, H., "Low Frequency Hearing Thresholds in Pressure Field and in Free Field", J. Low Frequency Noise and Vibration, v 9(3), p 106-115 1990

Sutherland, L. C., "Indoor Noise Environments Due to Outdoor Noise Sources", *Noise Control Engineering Journal*, v11, No. 3, p 124-137, 1978

World Health Organization (WHO), "Guidelines for Community Noise", edited by Birgitta Berglund, Thomas Lindvall, Dietrich H Schwela, Geneva, 1999

HEALTH & FAMILY SERVICES

Public Health Services
Telephone (519) 352-7270 • Fax (519) 352-2166

June 1, 2009

His Worship Mayor Randy Hope and Councillors The Municipality of Chatham-Kent 315 King Street West Chatham, ON N7M 5K8

Dear Mayor and Councillors:

RE: REQUEST FOR FURTHER CLARIFICATION ON HEALTH EFFECTS OF WIND TURBINES

I am aware that Council has received a great deal of conflicting information on this issue, including health complaints in our own Municipality alleged to be caused by proximity to wind turbines. I will explain the position of the Health Unit that there is currently no substantial basis to conclude that wind turbines are directly eroding the health of people.

Evidence for medical conclusions is categorized into three levels, with level I providing the strongest evidence and level III the weakest.

- Level I: Evidence obtained from at least one properly designed randomized controlled trial.
- Level II-1: Evidence obtained from well-designed controlled trials without randomization.
- Level II-2: Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.
- Level II-3: Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled trials might also be regarded as this type of evidence.
- Level III: Opinions of respected authorities, based on clinical experience, descriptive studies, or reports of expert committees.

Unfortunately, statistical analysis is limited with regard to wind turbine effects because of the paucity of level I and II evidence. Most of the so-called studies purporting to document adverse health effects caused by wind turbines are self-reported accounts or

open surveys of health issues that are nonspecific and common irrespective of wind turbine exposure, such as insomnia, hypertension, anxiety, digestive disturbances and subjective sensory changes. These accounts have been reported by the media and have created an impression in the public before a rigorous analysis has confirmed that there is either excess morbidity or an association with wind turbines. Uncontrolled selfreporting eliminates any chance of scientific analysis as there is no motivation or reason to report a lack of symptoms or a way to include all people in proximity to turbines. There is no mechanism to exclude people from participating in a self-reported survey multiple times. The boundaries of proximity are often not even defined. The lack of controls (a sample of people not exposed to wind turbines), failing to blind the surveyors (they should not know the exposure history before asking the questions) and not defining the study population result in what researchers call preselection bias. Similar surveys in the past have tended to distort and overestimate the prevalence of many things from "cancer clusters" to sexual practices (Kinsey's infamous sex surveys). There is no local data on the prevalence of these symptoms before wind turbines were installed, so it cannot be determined whether or not there has been an increase. The most eloquent spokesman for the anti-wind turbine activists, former UWO Dean of Medicine Dr Robert McMurtry, has admitted that there are no controlled studies, and he has called on the province to conduct such a study. This has been supported by at least one Ontario Health Unit, but this would be methodologically difficult. It is not possible to design a study to conclusively prove a lack of association, such as that wind turbines cannot cause health effects or that there are no ghosts.

At the present time we have people who have concluded, with gut-felt certainty, that they have health problems caused by wind turbines. These reports have received a great deal of media attention and organized political action groups have been formed which advocate for government action to address these health problems and suspend the construction of wind farms. These objectors operate web sites and write letters which promulgate dubious explanations such as infrasound induced DNA alterations, "wind turbine syndrome", coined by anti-wind turbine activist Dr Nina Pierpont of Malone, New York for a complex of nonspecific symptoms and "vibro-acoustic disease", tissue fibrosis first ascribed to extreme sound and vibration exposure in aviation environments by Portuguese investigators Alves Pereira and Castelo Branco, but later associated with the much lower sound levels of wind turbines and even automobiles. No other researchers have confirmed these findings. Wind turbine syndrome and vibro-acoustic disease impress lay persons as legitimate diseases which account for how they are feeling, but neither is listed in the International Classification of Diseases nor is described in any standard medical textbook. Most experts are skeptical that they exist.

So can we make sense of these complaints?

Most health complaints regarding wind turbines have centered on sound as the cause. Three kinds of sound are emitted by wind turbines: infrasound (oscillation frequencies less than approximately 10 Hz), low frequency sound of approximately 10-200 Hz and

the fluctuating aerodynamic "swish" from the turbine blades which is also low frequency, approximately 500-1000 Hz.

Infrasound from natural sources (meteors, volcanic eruptions, ocean waves and wind) surrounds us and is below the audible threshold. The infrasound emitted from wind turbines is at a level of 50 to 70 dB, also well below the audible threshold. There is a consensus among acoustic experts that the infrasound from wind turbines is of no consequence whatsoever. A problem is that objectors often use the term infrasound incorrectly when they are referring to low frequency sounds.

Low frequency sounds below 40 Hz cannot be distinguished from background noise due to the wind itself. Perceptible (meaning above the background noise) low frequency noise can be produced by wind turbines under conditions of unusually turbulent wind conditions, but the actual sound level depends on the distance of the listener from the turbine, as the sound attenuates (falls off). The higher the frequency and the higher the temperature, the greater the sound attenuates with distance. Terrain and humidity are other factors. The low frequency noise emitted by spinning wind turbines could possibly be annoying to some when winds are unusually turbulent, but there is no evidence that this level of noise could be harmful to health. If so, city dwelling would be impossible due to the similar levels of ambient noise levels normally present in urban environments. It is not usually the low frequency nonfluctuating noise component that provokes complaints.

The fluctuating aerodynamic sound (swish) in the 500-1000 Hz range is from the wind turbine blades disturbing the air, modulated by the blades passing the tower which changes the sound dispersion characteristics in an audible manner. This fluctuating aerodynamic noise is the cause of most noise complaints regarding wind turbines, as it is harder to become accustomed to fluctuating noise than to noise that does not fluctuate. The noise limits imposed by the Ministry of the Environment for wind turbines are designed to prevent noise issues but some wind turbines produce noise levels that may be irritating and even stressful to some people who are more sensitive to noise. Sleep disturbance can occur. Others exposed to the same noise levels may experience no difficulty. There is no evidence of direct effects to health by this level of noise but there could be indirect effects from annoyance-induced stress. One paper categorically states that the only health effect of wind turbine noise is annoyance.

There is a large body of medical literature on stress and psychoacoustics. There is a great deal of individual variation in the response to any given stimulus and legislated limits to noise and other annoyance factors are not designed to prevent problems in the most sensitive members of the population. Three factors that seem particularly

¹ Regan B., Casey T.G. Wind Turbine Noise Primer, Canadian Acoustics Special Issue, 34 (2) June 2006

pertinent to the discussion of wind turbine effects are the fear factor, also called the nocebo effect, and two medical conditions, sensory integration dysfunction and somatoform disorders.

The large volume of media coverage devoted to the alleged adverse health effects of wind turbines understandably creates an anticipatory fear in some that they will also experience adverse effects from wind turbines. Every person is suggestible to some degree. The resulting stress, fear and hypervigilance may exacerbate or even create problems which would not otherwise exist. In this way, anti-wind farm activists may be creating with their publicity some of the problems which they describe. This is the nocebo effect and it is the negative counterpart to the placebo effect where belief in an intervention may produce positive results.

Sensory integration dysfunction is a little-understood condition of abnormal sensitivity to any or all sensory stimuli (sound, touch, light, smell, taste). The afflicted experience unpleasant overpowering sensations to ambient conditions considered normal by most people. There is little data on the prevalence of this condition and it may be more common than is realized. Such individuals would be more sensitive to wind turbine noise than most.

Somatoform disorders are characterized by physical symptoms which reflect psychological states rather than physical causes. Conversion is the unconscious expression of stress and anxiety as a physical symptom and it is very common. Common conversion symptoms are vague sensations of tingling or discomfort, fatigue, poorly localized abdominal pain, headaches, back or neck pain, weakness, loss of balance, hearing and visual abnormalities. The wind turbine controversy has raised the rhetoric to stressful levels, and the similarities of human stress responses and conversion symptoms to those described as so-called wind turbine syndrome are striking.

In summary, there is no scientifically valid evidence that wind turbines are causing direct health effects, although the body of valid evidence is limited. It is unlikely that evidence of adverse health effects will emerge in the future because there is no biologically plausible mechanism known by which wind turbines could cause health effects. There are wind turbines in urban environments, including Toronto, that have not been causing problems. The European experience would indicate that wind farms can be compatible with rural environments. An annoyance factor undoubtedly exists to which there is individual variability. Associated stress from annoyance, exacerbated by all the negative publicity, is the likely cause for the purported erosion of health that some people living near rural wind turbines are reporting. Stress has multiple causes and is additive.

Unfortunately, there has been some misunderstanding regarding the role of the Medical Officer of Health and the Health Unit in these matters. It is beyond the scope of the

Chatham-Kent Health Unit to address this in any but a general manner. In my opinion the issue of wind turbine noise and associated stress needs to be managed at the Provincial level. If the Ministry of the Environment noise guidelines for wind turbine installations are exceeded, affected people have the option to pursue compensation, but the Chatham-Kent Board of Health has confirmed that it is not the role of the Health Unit to become involved in private litigation matters. From the outset, when requested by Council, the Health Unit and I have attempted to provide a balanced, evidence-based and scientifically valid appraisal of this whole situation to Council. As a result, anti-wind farm activists have attacked me personally on internet sites, accused me of being financially influenced by wind turbine manufacturers (untrue) and even made complaints about my conduct to regulatory bodies. Letters to the Chatham Daily News have castigated me for neglecting the health of Chatham-Kent citizens with the kind of inflammatory phrases spoken, it seems to me, in the language of people with a higher regard for their own convictions than for the facts.

Sincerely,

W. David Colby, MSc, MD, FRCPC Acting Medical Officer of Health Chatham-Kent Health Unit

Encl.:

Ramakrishnan R. Acoustic Consulting Report for the Ontario Ministry of the Environment, December 2007.

Leventhall, G. Infrasound from Wind Turbines – Fact, Fiction or Deception, Canadian Acoustics Special Issue 34(2), June 2006.

ACOUSTIC CONSULTING REPORT Prepared for the Ontario Ministry of the Environment

WIND TURBINE FACILITIES NOISE ISSUES

Aiolos Report Number: 4071/2180/AR155Rev3

DECEMBER 2007

Author Ramani Ramakrishnan, Ph. D., P. Eng.

Lead Acoustician

Signature

Date: 28 December 2007

lamen demakes han

© Queen's Printer for Ontario, 2007

TABLE OF CONTENTS

			<u>Pag</u>	ge No.
EXE	CUTIVE	SUMM	IARY	v
1.0	INTRO	ODUCT	TION	1
	1.1		round	
2.0	REVII	EW OF	G. P. VAN DEN BERG'S DISSERTATION	2.
	2.1		round	
	2.2	_	er III – Basic Facts	
			Wind Profiles and Atmospheric Stability	
			Main Sources of Wind Turbine Sound	
	2.3		er IV: Loud Sounds in Weak Winds – effect of the wind-profile on turb	
			level	
			Basic Assessment.	
		2.3.2	Sound Emission and Sound Immission Levels	
			2.3.2.1 Sound Emission Levels	
			2.3.2.2 Sound Immission Levels.	
	2.4	Chapte	er V: The Beat is Getting stronger – low frequency modulated wind tur	
	2.5		er VI: Strong Winds Blow upon tall Turbines – Wind Statistics below	
			tude	
	2.6		ary	
3.0	REVII	EW OF	AVAILABLE NOISE POLICIES AND GUIDELINES	25
	3.1		Guidelines for Community Noise.	
	3.2		American Noise Level Limits As Applied to Wind Turbines	
			Publications to Wind Turbine Generators.	30
		3.2.2	Alberta - EUB Directive 038 Noise Control	
		3.2.3	British Columbia - Land Use Operational Policy: Wind Power	
			Projects	
		3.2.4	Québec - Instruction Memo 98-01 on Noise (Note: revised as of	
			June 9, 2006)	32
		3.2.5	Oregon - Revising Oregon's Noise Regulations for Wind Turbines	
		3.2.6	Pennsylvania - Wind Farm Model Ordinance Draft 12-08-06	
		3.2.7	Washington - Chapter 173-60 WAC Maximum Environmental	
			Noise Levels	35
		3.2.8	Michigan - Michigan Wind Energy System Siting Guidelines	
			Draft #8	35
		3.2.9	Maine - Chapter 375 No Adverse Environmental Effect Standard	
			of the Site Location Law	36

		3.2.10 New York - Power Naturally: Examples of NY Local Government	
		Laws/ Zoning Provisions on Wind	37
	3.3	Noise Limits from Europe	38
		3.3.1 UK - ETSU-R-97: The Assessment and Rating of Noise from	
		Wind Farms	
		3.3.2 Ireland - Wind Energy Development Guidelines	39
		3.3.3 Denmark - Document: Statutory Order From the Ministry of the	
		Environment No. 304 of May 14, 1991, On Noise From Windmills	39
		3.3.4 Germany - Document: Lärm (Techniche Anleitung Lärm,	
		Germany), 1998	39
		3.3.5 Netherlands: Bseluit van 18 oktober 2001, houdende regels voor	
		voorziengen en installaties; Besluit voorziengen en installaties	
	2.4	milieubeheer; Staatsblad van het Koninkrijk der Nederlanden 487	
	3.4	Wind Farm Noise Limits from Australia and New Zealand	41
		3.4.1 Australia - Planning Bulletin 67: Guidelines for Wind Farm	4.1
		Development and Environmental Noise Guidelines: Wind Farms	41
		3.4.2 New Zealand - NZS 6808: 1998: Acoustics – The Assessment and	4.0
	3.5	Measurement of Sound From Wind Turbine Generators	
	3.5 3.6	Discussion Summary Summary	
	3.0	Summary	43
4.0	REVI	EW OF AVAILABLE LITERATURE	45
	4.1	Meteorological Effects	45
	4.2	Assessment Procedures of Wind Turbine Noise Levels	47
	4.3	Particular Characteristics of Wind Farm Noise	48
	4.4	Human Responses to Wind Farm Noise Levels	
	4.5	Summary	51
5.0	DEM	EW OF MOE'S NOISE POLICIES AS APPLIED TO WIND FARM NOISE	50
5.0	5.1	MOE's Assesment Process	
	5.2	Penalty for Source Character	
	5.3	Meteorological Conditions	
	5.4	Summary	
6.0	CON	CLUSIONS	56
DEEI	EDENIC	ES	57
KEFI		ral References	
	Gene	at References	3
REFI	ERENC	ES - 2	60
		Regulations	
APPI	ENDIX		64
	interp	oretation for Applying MOE NPC Technical Publications to Wind Turbine Generators	64
		Cienerators	04

APPENDIX B	65
NPC - 232 - Sound Level Limits for Stationary Sources in Class 3 Areas	
APPENDIX C	66
NPC - 205 - Sound Level Limits for Stationary Sources in Class 1 & 2	Areas (Urban)66
APPENDIX D	67
Weather Data (Goderich Station) - Wind Power Output Data (Kingsbrid	ge Wind Farms)
for June, July & August 2006	67
APPENDIX E	82
The Beating Phenomenon	82
APPENDIX F	87
An Assessment Procedure.	87

EXECUTIVE SUMMARY

All proponents of a wind farm development need to apply for a Certificate of Approval from the Ministry of the Environment of Ontario. The noise assessment report required for the approval process uses the guideline Ministry document, "Interpretation for Applying MOE NPC Technical Publications to Wind Turbine Generators" released in 2004. The above guidance document was to assist proponents of wind turbine installations in determining the list of necessary information to be submitted when applying for a Certificate of Approval (Air and Noise) under Section 9 of the *Environmental Protection Act*. The noise guidelines in MOE publications NPC-205/NPC-232 as well as the wind generated noise levels were applied to set the noise limits.

The Ministry has now initiated a review of the interpretation of the above policies, due to expanding body of knowledge of the noise impacts of wind turbines. The main aim of the proposed review is to assess the appropriateness of the Ministry's approach to regulating noise impacts of wind turbines.

The scope and requirements of the review can be summarized as: a) Review of the 2006 doctoral dissertation by van den Berg; b) Review of available noise policies and guidelines; review of relevant scientific literature; and review of MOE's current noise policies as applied to wind turbine noise and c) Provide expert opinion based on the above findings; and d) Prepare a report that provides advice on the state of the science regarding wind turbine noise, and on MOE policies and procedures that relate to wind turbine facilities. The results of the investigations are described below.

Van den Berg's research was initiated as a result of complaints, in Netherlands, against an existing wind farm in Germany very close to the Dutch border. The main hypotheses of the research are: a) atmospheric stability, particularly stable and very stable conditions happen mostly at night time and the hub-height wind speeds can be higher than those predicted from the 10 m high wind speeds using standard methods, such as the logarithmic profiles of the IEC standard. And hence, the wind turbine noise levels can be higher than expected. It was also conjectured that these discrepancies are prevalent during summer months; and b) beat-sounds

can become very pronounced during stable and very stable conditions. Although, the data of van den Berg's research did not provide conclusive scientific evidence to support the above hypotheses, further review of the literature showed that some of the basic conjectures may well be true. Hence, the research of van den Berg must be considered as the catalyst that started serious discussion on many noise aspects of wind farm. Future research must therefore provide strong scientific data to validate these different noise concerns.

The noise policies from different Canadian provinces, USA states and a few other countries were reviewed. General comparison of the noise regulations was presented. The main differences between the different regulations seem to be: i) in the acceptable noise limits; and ii) in the evaluation of receptor noise levels from the cumulative operation of the turbines in the wind farm. Further, some jurisdictions have special legislation concerning wind turbines, while others apply general recommendations. The Ministry of the Environment assessment process in Ontario is similar to other jurisdictions.

A literature review, focussed mainly on a) Metrological effects on wind turbine noise generation; b) Assessment procedures of wind turbine noise levels and their impact; c) Particular characteristics of wind farm noise; and d) Human responses to wind farm noise levels, was conducted. It showed that - local terrain conditions can influence meteorological conditions and can affect the expected noise output of the wind turbines; assessment procedures of sound power levels and propagation models, applied in different jurisdictions are quite similar in their scope; wind farm noise do not have significant low-frequency (infrasound) components; and modulations effects can impact annoyance;

The Ministry of the Environment's procedures to assess wind farm noise levels follow a simple procedure that is sound for most situations. However, additional concerns still need to be addressed in the next round of revisions to their assessment process. These revisions may need to be addressed after the results from future research provide scientifically consistent data for effects such as meteorology, human response and turbine noise source character.

1.0 INTRODUCTION

1.1 BACKGROUND

The Ministry of the Environment released a guideline document, "Interpretation for Applying MOE NPC Technical Publications to Wind Turbine Generators" in 2004. The above guidance document was to assist proponents of wind turbine installations in determining the list of necessary information to be submitted when applying for a Certificate of Approval (Air and Noise) under Section 9 of the *Environmental Protection Act*. The noise guidelines in MOE publications NPC-205/NPC-232 as well as the wind generated noise levels were applied to set the noise limits. The revisions to NPC-205/NPC-232 (in draft form) did not change the evaluation of noise limits and/or procedures applicable to wind turbines. The three Ministry documents are enclosed in Appendices A through C.

The Ministry has now decided to initiate a review of the interpretation of the above policies, due to expanding body of knowledge of the noise impacts of wind turbines. The main aim of the proposed review is to assess the appropriateness of the Ministry's approach to regulating noise impacts of wind turbines. And the Ministry, to support the proposed review, has retained Aiolos Engineering to provide acoustical technical expert advice on the recent findings about low frequency and wind profiles on wind turbine noise impacts.

The scope and requirements of the technical advice can be summarized as shown below:

- (1) Review of the 2006 doctoral dissertation by van den Berg;
- (2) Review of
 - 2.1 available noise policies and guidelines;
 - 2.2 Review of relevant scientific literature; and
 - 2.3 Review of MOE's current noise policies as applied to wind turbine and
- (3) Provide expert opinion based on the above findings;
- (4) Participate in a focus group discussion; and
- (5) Prepare a report that provides advice on the state of the science regarding wind turbine noise and on MOE policies and procedures that relate to wind turbine facilities.

2.0 REVIEW OF G. P. VAN DEN BERG'S DISSERTATION

2.1 BACKGROUND

Dr. G. P. van den Berg of the University of Groningen conducted research on the noise characteristics of wind turbines, the impact of wind profiles on its propagation as well as the subjective response of sensitive receptors. The results of the above research are summarized in the 2004 Journal of Sound and Vibration article (Reference 2) with the details given in his 2006 doctoral dissertation (Reference 1).

A list of documents used for this assessment is enclosed in the reference list. *NOTE*: References 2, 3 and 4 by van den Berg presents only summary results of his research and the complete details are included in his dissertation (Reference 1). Hence, references 2, 3 and 4 will not be commented upon in this review.

The main aims of van den Berg's dissertation can be summarized as follows:

- A group of residents complained against the perceived noise effects from a wind farm located along the border between Germany and Netherlands and were unable to obtain satisfactory resolution from the authorities and hence the university's Science Shop for Physics was retained to investigate the validity of the residents' claims;
- ii) The main complaints seem to centre around perception during evening and night hours, and hence the dissertation focussed on atmospheric stability and the resulting noise effects:
- iii) The main hypotheses are: a) atmospheric stability, particularly stable and very stable conditions happen mostly at night time and the hub-height wind speeds can be higher than those predicted from the 10 m high wind speeds using standard methods, such as the logarithmic profiles of the IEC standard. And hence, the wind turbine noise levels can be higher than expected. It was also conjectured that these discrepancies are prevalent during summer months; and b) beat-sounds can become very pronounced during stable and very stable conditions.

The research uses a set of measurements near one wind farm as well as wind data from locations between 10 km and 40 km from the wind farm area. The whole thrust of the dissertation is to prove the hypotheses listed above.

The dissertation is broken into ten chapters, four general sections and four appendices. The chapter titles are: I) Wind power, society and this book: an introduction; II) Acoustical practice and sound research; III) Basic Facts; IV) Loud sound in weak winds; V) The beat is getting stronger; VI) Strong winds blow upon all turbines; VII) Thinking of solutions; VIII) Rumbling sound; IX) General conclusions and X) Epilogue.

Chapter I is basically an introduction and a justification for conducting the doctoral research by van den Berg. The reasons are seen to be based on anecdotal responses rather than from a truly scientific and statistical analysis of response surveys. Chapter II is a strong criticism of acoustic consultants and their inadequate effort in finding the true wind turbine noise levels and their potential impacts.

Chapters III, IV, V and VI are the relevant chapters for this review and assessment. The assessment will be presented in subsequent sections. Chapters VII through X are not critical for the current assessment and will not be commented upon. The assessments are presented next.

2.2 CHAPTER III – BASIC FACTS

Chapter 3 contains four sections and Sections 2 and 4 provide relevant background materials. Section 2 discusses wind profiles and Section 4 presents the many sources of wind turbine sound.

2.2.1 Wind Profiles and Atmospheric Stability

The main contention of this dissertation is that the hub-height velocity can be much higher than predicted with simple formula used currently in standards and other literature. This section presents two simple velocity profile equations to obtain wind velocities at different heights (Equations III.1 and III.3). Eq. III.3 is the standard logarithmic profile used in current literature.

This equation is being questioned as to its validity by this dissertation. Equation III.1 is a simple power law relationship with a shear coefficient as the exponent. Even though the dissertation states that Eq. III.1 has no physical basis, the dissertation applies this equation with 'suitably chosen' shear coefficient 'm' throughout the dissertation. Equation III.1 has been applied in many areas of engineering application and it is based both on dimensional analysis and empirical relationship obtained from field measurements. These two equations from Reference 1 are presented here for completeness sake.

$$V_{h2} / V_{h1} = (h_2/h_1)^m$$
 III.1

where 'm' is the shear coefficient, h_1 and h_2 are the two heights and V are the wind velocities at heights h_1 and h_2 .

$$V_{h2 \log} / V_{h1} = \log(h_2/z_0) / \log(h_1/z_0)$$
 III.3

where z_0 is a roughness length of the surrounding terrain.

2.2.2 Main Sources of Wind Turbine Sound

A brief summary is presented of the different mechanism of noise generation including the interaction between the mast and the blade. Considerable amount of literature is available that outlines the noise from rotating aerofoil from early 1900s onwards. Hence, the information presented is a summary of earlier research.

However, it must be pointed that the dissertation mentions and/or presents information throughout the dissertation either heuristically or by presenting only scant data. One such case can be seen in Chapter III where it is stated, "An overview of stability classes with the appropriate value of m is given in Table III.1." No documentary evidence is given for the chosen values of 'm' or how the appropriateness of 'm' was determined. The reason this point is made here is the 'stability class' designation can change drastically depending on the value of 'm'. Table III.1 of Reference 1 is reproduced below.

Table III.1: stability classes and shear exponent m

Pasquill class	name	comparable stability class [TA-Luft 1986]	m
A	very unstable	V	0.09
В	moderately unstable	IV	0.20
C	neutral	IV2	0.22
D	slightly stable	IV1	0.28
E	moderately stable	П	0.37
F	(very) stable	I	0.41

2.3 CHAPTER IV: LOUD SOUNDS IN WEAK WINDS – EFFECT OF THE WIND-PROFILE ON TURBINE SOUND LEVEL

This is one of the most important chapters in the dissertation. The main hypothesis of the chapter is to show that the hub-height velocity can be higher than predicted from the 10 m high wind speeds using standard methods during stable and very stable atmospheric conditions and hence the wind turbine noise levels can be higher than expected even though the ground level velocities can be small at 2 m and 10 m heights. Such a wind-profile is possible when the atmospheric stability class is a combination of Pasquill Classes E and F with quiet winds and no cloud cover.

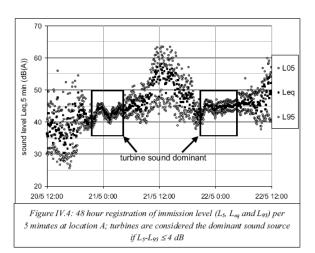
Chapter IV is supposed to prove the above hypothesis with scientific support.

2.3.1 Basic Assessment

The first three sections of the chapter provide background information on the Rhede wind farm in northwest Germany that abuts Netherlands. Even though, the noise assessment showed that the wind farm complies with both German and Dutch guidelines, nearby Dutch residents complained about the noise levels. The Science Shop for Physics of the University of Groningen (van den Berg's faculty) was retained to assist the residents to resolve their concerns. Section 3 presents anecdotal responses of two residents and their perception of wind turbine noise – 'pile driving sound', 'thumping sound', 'endless train sound' and such. There is no subjective polling under a blind survey to accompany the technical data presented.

2.3.2 Sound Emission and Sound Immission Levels

Long-term noise measurements were conducted at two receptor locations near the Rhede Wind Farm at two different time periods. Location A is 400 m west of the wind farm and Location B is 1500 m west of the wind farm. Wind velocities at 2 m and 10 m heights were measured only at Location A. *NOTE: It must be pointed out that wind speeds at hub-height were not measured.* The area around Location B has both low and tall trees in its vicinity. The following explanation and we quote, "As, because of the trees, the correct (potential) wind velocity and direction could not be measured on location B, wind measurements data provided by the KNMI were used from their Nieuw Beerta site 10 km to the north. These data fitted well with the measurements on location A" was offered to justify the use of data from a far-off wind-measuring location. The above statement is heuristic at best since no data (figures and/or tables) were provided to back the above claim. Hence, it was very difficult to make sense of the data presented in the dissertation document. Similarly, meteorological data from Elde site (40 km to the west) was used to establish neutral and stable atmospheric classes for the above two sites. Even though the section states that not all Elde observations would be valid for Locations A and B, the report still used the Elde information without qualifying its validity.


The main aim of the fourth chapter was to show that the atmospheric class during night is 'stable' or 'very stable'. The stable classes, supposedly, produce hub-height wind speeds that are higher than day time values, even though the 10 m high wind speeds could be low at night and the standard wind profiles are not able to predict the high hub-wind speeds at night. The outcome of the above hypothesis is that the night time noise levels, therefore, are higher than expected. However, as shown above, the establishment of atmospheric classes itself becomes suspect. Hence, the subjective perception that the noise levels were high may be due to low ambient sound levels during the late evening and night time hours, thereby making the wind farm noise audible.

2.3.2.1 Sound Emission Levels

Sound emission levels are the sound levels generated by the wind turbines and it is crucial to extract the levels from field measurements of overall levels. The noise levels from nine turbines were measured (Section 6) and an empirical relationship between the sound power and turbine rpm was established. The resulting sound power levels were used to calculate the noise levels at receiver locations and compare them with local measurements.

2.3.2.2 Sound Immission Levels

Sound immission, a phrase used in Europe, refers to the sound levels at receptor locations. Sound immission levels at Locations A and B were discussed in Section 7 of Chapter IV of Reference 1. The data provided is very difficult to analyse and at times very confusing. 371 hours of data for Location A and 1064 hours of data for Location B were collected. Since the monitors were un-manned, the differences in A-weighted sound levels between the 5^{th} and 95^{th} percentiles over 5-minute intervals were used to determine the dominance of turbine sound. The report uses a value, $L_5 - L_{95} \le 4$ dBA, to deduce (Figure IV.4 of Reference 1) the duration of high sound levels at night time and at day time. There was no reason given as to the selection of the 4 dBA number. One would have expected a lower value, if the wind turbines were the main dominant noise sources. Actually, the value was close to 3 dB as described in Chapter V of Reference 1 (page $71 - R_{bb,90}$ at Location P was around 3 dB). Figure IV.4 is reproduced below.

The criterion of $L_5 - L_{95} \le 4$ dBA to determine the dominance of wind turbine noise is critical to the assessment. If the sound was steady during the 5-minute period, the above difference would be zero. Since outdoor sound levels are never steady, one would expect some variability. However, it is our belief that 4 dBA range is too high. If one were to reduce the difference to 2 dBA or 3 dBA, the night time duration for dominant sound levels would reduce substantially compared to the results presented in Table IV.3 of Reference 1. Table IV.3 is reproduced below.

Table IV.3: total measurement time in hours and selected time with dominant wind turbine sound

The dominant That the ball Sound									
Location	total time (hours and % of total	Night	Evening	Day					
Location	measurement time at location)	23:00-6:00	19:00-23:00	6:00-19:00					
A: total	371 h	105	75	191					
A: selected	92 h 25%	76 72%	9 12%	7 4%					
B: total	1064 h	312	183	569					
B: selected	136 h 13%	119 38%	13 7%	4 0,7%					

The sound immission levels from all the measurements (the entire 1435 hours of data) were organized into the dominant turbine noise levels based on the 4 dBA difference and presented in Figure IV.5 of Reference 1, which is reproduced below. This figure with four sub-plots, is the most difficult figure to decipher. This is one of the most important figures used to conclusively provide evidence for the main argument of the dissertation. If one does not accept the 4dBA argument, the whole data structure of Figure IV.5 of Reference 1 is suspect. Further to cloud the issue, stable and neutral atmospheric classes, gleaned from Elde data (located 40 kms away) was superimposed. [Reference 1 on Page 47 does state that not all Elde data would be valid for Locations A and B, but continues, anyway, to use the invalid data to determine stability classes]. One must also infer that 'stable' classes occur only at night time and 'neutral' classes occur during the day time, even though the above was not stated explicitly in the report. No proper explanation was given for applying the above inference.

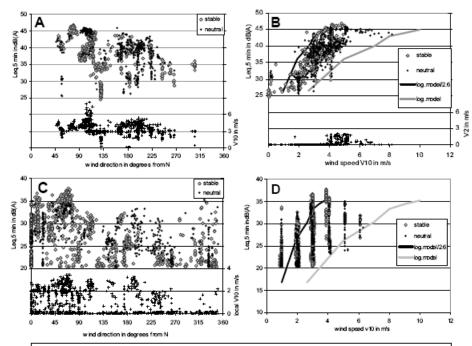


Figure IV. 5: measured sound levels $L_{eq,5 \, min}$ at locations A (above) and B (below) as a function of median wind direction (left) and average wind speed (right) at reference height (10 m), separated in classes where the atmosphere at Eelde was observed as stable (open diamonds) or neutral (black dots). Also plotted are expected sound levels according to logarithmic wind profile and wind speed at reference height (grey lines in B and D), and at a 2.6 times higher wind speed (black lines in B and D). Figures A, B and C also contain the wind speed $v_{10}(A)$, $v_2(B)$, and the local $v_{10}(C)$ disturbed by trees, respectively.

Figures IV.5 B and IV.5D Reference 1 present the variation of 'dominant' turbine noise levels as a function of wind speed measured at a height of 10 m. **NOTE:** It must be pointed out that no wind speeds were measured for Location B. The data points ($L_{eq, 5 min}$ in dBA) were also separated into 'stable' and 'neutral' atmospheric classes. In addition, the calculated sound levels from the sound power data from Section IV.6 were also plotted in these two figures. The wind speed at 10 m height for the calculated plot was evaluated using the logarithmic wind profile of Equation III.3 shown in Section 3 of the current assessment report. Since the logarithmic wind profile was supposed to be incorrect, a corrected noise level plot, by applying a factor of 2.6, was also included in Figures IV.5B and IV.5D of Reference 1. These two figures were used to make two strong statements against the procedures used to assess wind-turbine and wind farm noise impacts.

Statement I: 'Stable' atmospheric conditions occur at night time and wind turbine noise levels are higher than expected due to high wind-velocities at hub-height.

Statement II: Logarithmic wind profile, generally used in standard procedures, is incapable of predicting current wind speeds at various heights for 'Stable' atmospheric classes, occurring at night time. And hence, these higher than expected noise levels occur at night time with low ground wind speeds, thereby, increasing the impact on residents.

However, the two figures do not provide conclusive evidence to support the above two statements for the following reasons. Contrary evidence to Statement I will be further discussed in the next section with field data from New Zealand and Australia.

- a) The 'stable' and 'neutral' class designations used in the two figures are applied from a location 40 kms away and hence not valid for Locations A and B;
- b) Both classes seem to produce high as well as low sound levels as clearly seen for Location B (Figure IV.5D Reference 1);
- c) The light grey sound level line supposed to represent the 'neutral' class quite accurately (as stated in Chapter III of the dissertation). If that were to be true, all of the 'neutral' class data points would have collapsed near that line. However, that was not the case, as the data points are scattered all over the figures;
- d) Even at a distance of 400 m from the wind farm (Location A), only a small percentage of the 'neutral' class noise levels is near the neutral line;
- e) Finally, if the $L_5 L_{95}$ value is close to 2 or 3 dBA, the entire dominant sound levels at night time could occur well below the 25% to 35% time presented in this dissertation.

As part of the current investigation Aiolos Engineering undertook a brief review of summer weather data near a wind farm located adjacent to Lake Huron in Southern Ontario. Summer data was reviewed as the main hypothesis of van den Berg is that the wind speed discrepancies due to stability classes are severe during the evening and night hours of summer months. The

objective of this review was to test the rigour of the two "van den Berg" Statements I and II. Since this review was conducted in the context of the current investigation and this report, the scope of the review was limited both in its duration and site selection. The review of this data will show that limited data of the type that van den Berg relied on cannot be used to draw strong conclusions.

Aiolos Engineering compiled wind speed data from one weather station in Ontario for a period of three summer months (June, July and August 2006). The Environment Canada's weather station at Goderich, Ontario is situated within a few kms of a wind farm with 21 wind turbines. The Kingsbridge wind farm has the capacity to generate 40 MW of power. The data for the three month period was compiled in different formats and the results are presented in Appendix D. The atmospheric stability classes were approximated using the information from the AIR-EIA website (Reference 19). Even a cursory perusal of the Appendix D data would show that the correlation between stability classes and power generation is quite inconsistent. The power generated by the wind farm was obtained from the Independent Electricity System Operator's data base for Ontario (Reference 34). Unless a detailed study of the wind power generation and wind speed behaviour at the wind farm location is conducted, one cannot make strong conclusions as presented by van den Berg's work. Another salient observation from Appendix D data is that the wind farm power generation and wind speed behaviour is highly localised, controlled by the local conditions

One must point out at this juncture, that the conjectures presented in van den Berg's Statements I and II may well be true. However, the research presented in van den Berg's dissertation has not provided strong scientific evidence for the same. In addition, the data of figures IV.5 clearly shows that the sound levels at Location A, 400 m west of the wind farm is less than 40 dBA and the noise levels at Location B, 1500 m west of the wind farm, is less than 35 dBA for a substantial portion of the measurement period.

2.4 CHAPTER V: THE BEAT IS GETTING STRONGER – LOW FREQUENCY MODULATED WIND TURBINE SOUND.

Chapter V deals with the effect of frequency modulation of the wind turbine noise levels. This chapter is an important chapter since it is supposed to provide evidence that the beating phenomena gets stronger with worst results during the 'stable' atmospheric classes. The 'stable' atmospheric classes are supposed to occur only during late evening and night time hours and the turbine is supposed to generate higher than expected noise levels with the ambient sound levels at the receivers being low due to lower than expected ground speeds. The inference here, therefore, is that any modulation of higher noise levels would cause additional hardships on the receiver. This chapter aims to show that the above is true.

Chapter V is broken into 3 main sections. Section V.1 discusses the effects of atmospheric stability on wind turbine noise generation. It discusses, three possible effects, purely as theoretical conjunctures that beating (or modulation) can be due to - a) the increase in the angle of attack changes between the blade at its highest location and at its lowest location during stable conditions; or b) increase in the wind direction gradient between the blade at its highest location and at its lowest location during stable conditions; or c) reduced wind turbulence during stable conditions. No supporting experimental evidence was forthcoming. We agree that purely from theoretical consideration that the three possible mechanisms can produce amplitude modulation phenomena. But, does this happen only for 'stable' and 'very stable' atmospheric conditions and only at night time?

The other major misconception arising out of this chapter is the terms used to describe the said phenomenon – 'swishing', 'thumping', and 'beating'. The beating phenomenon in acoustics called *beat* is a special event when two sounds occur with their dominant frequencies very close to each other. A general description of *beating* is presented in Appendix E. The amplitude modulation phenomenon is different from *beating*. The acoustical principles that describe the amplitude modulation phenomenon are generally considered to be related to the movement of the turbine blades through air and the interaction of the blades with the stationary mast. In addition, the amplitude modulation could be caused by the nature of wind itself – random both in speed

and direction. Irrespective of the underlying principles, the amplitude modulation produced by wind turbines is a different phenomenon from acoustical *beating*.

The UK working group on Wind Farm noise (Reference 30) studied the phenomenon of amplitude modulation and found the levels inside residential bedrooms to be below the sleep disturbance level. Importantly, the UK report recommended that further studies be conducted to understand the amplitude modulation better. [Further descriptions of the aerodynamic modulation will be presented in Section 4].

Section V.2 presents measurement at three locations; two near the Rhede wind farm and the third location (Location Z) is near a single small wind turbine. Between 10 and 15 minutes of data were collected. The measurement results are presented in terms of spectral variations. The wind velocity was measured only near one location and the wind speed data for Location Z was obtained from a number of nearby weather stations. Two conclusions were obvious from the results:

- a) the infra-sound, when measured as dBG with the G-weighting scale, was found to be not audible, approximately between 15 20 dB below the threshold of perception, indicating that modern wind farms do not generate infrasound levels that are perceptible. For information on G-weighting network, please see Reference 31;
- b) the A-weighted sound levels correlated with spectra around 400 Hz which indicates the major source is the trailing edge noise.

The main thrust of this chapter was to discuss the amplitude modulation phenomena. The modulation at Location P was audible during the measurements period, but very small at Locations R and Z. The main effect of the modulation is not to produce low frequency sounds, but change the amplitudes which are discernable by the receivers. The results showed amplitude modulation at Location P with a variation of about 5 dBA between maximum and minimum. Even though the measurements were conducted for a long duration, only 180 second of measured data was shown to prove the existence of the modulation (beating) in Figure V.4 of

Reference 1. The modulation was seen to be strong only for 30 seconds. Even though the variation was 1 dB more at Location R, no modulation was discernable. No explanation was given for these discrepancies. Even though the level variation did not indicate beating at Location R, the level variations for Locations A and B from Chapter IV were shown in Figure V.7 of Reference 1 to conjecture that modulation would happen at these locations, 28% of the time and 18% of the time respectively. Since the measurements at Locations R, P and Z were conducted at early morning hours (midnight), it was assumed to be stable weather conditions. No data was provided to substantiate the absence of modulation during other weather conditions, such as 'neutral' and/or 'unstable' atmospheric classes. Hence, one cannot immediately conclude that modulation occurs only during the 'stable' and 'very stable' atmospheric class. Figures V.4 and V.7 of Reference 1 are reproduced below,

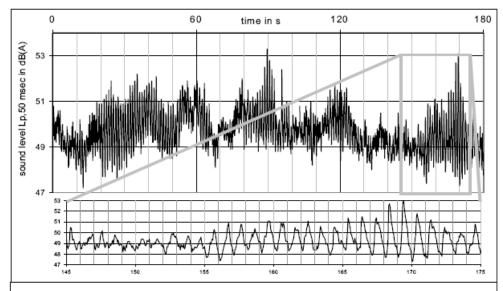


Figure V.4: fluctuations in broad band A-weighted sound immission level at façade of dwelling P; the lower panel is an expansion of the part within the grey rectangle

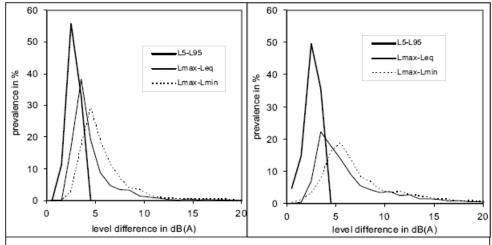
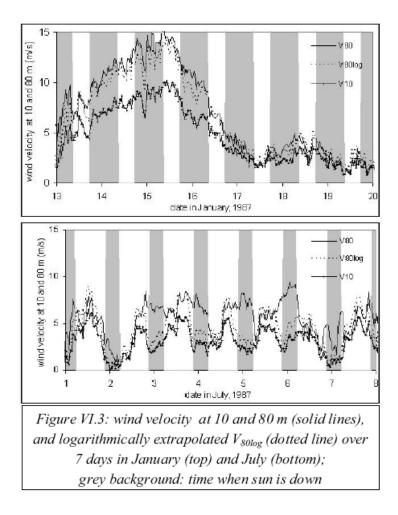


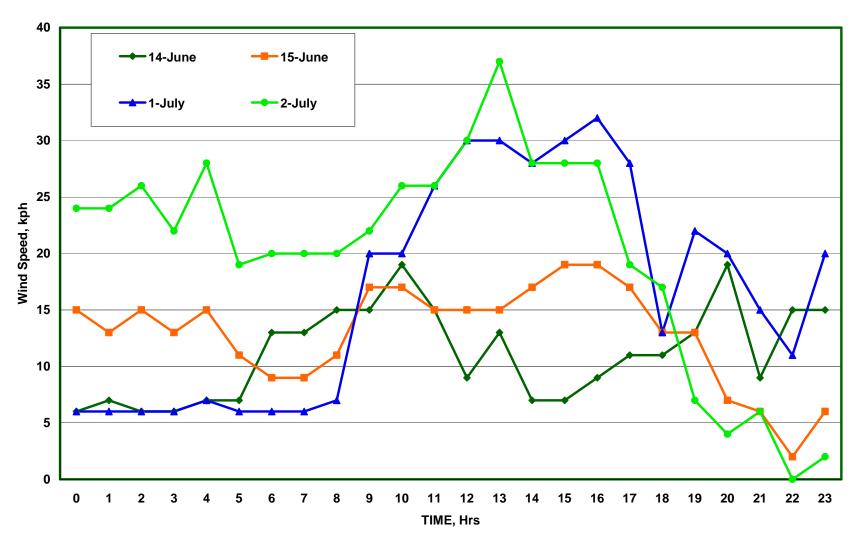
Figure V.7: statistical distribution of level differences (in 1 dB-classes) between high and low sound levels within 5 minute periods at 400 m (left) and 1500 m (right) from the nearest wind turbine

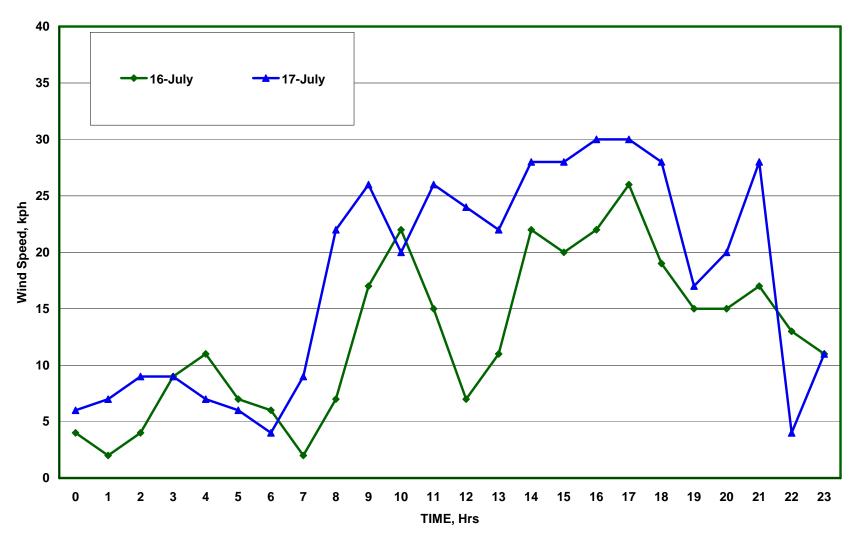

Finally, Section V.3 discusses the perception of the modulated sound. It begins by quoting the subjective response work of Pedersen and Waye (Reference 5) that about 20% of residents would be annoyed with noise levels in the range of 37.5 dBA to 40 dBA. It then jumps to anecdotal responses of two residents near the Rhede farm. There are no studies cited in van den Berg's work that show a correlation between modulated sound and annoyance and hence van den Berg conjectures the annoyance would be worse since the expected amplitude variations make the perception of the sound strong. However, no evidence other than anecdotal responses was forthcoming.

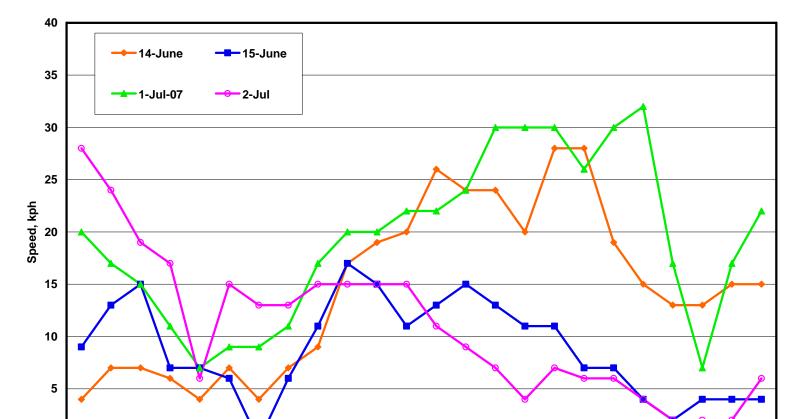
2.5 CHAPTER VI: STRONG WINDS BLOW UPON TALL TURBINES – WIND STATISTICS BELOW 200 M ALTITUDE

This chapter deals with actual wind speed data from one site in western part of the Netherlands. The wind velocities at different heights, 10 m, 20 m, 40 m, 80 m, 140 m and 200 m were measured at half-hour intervals. The results, averaged for the entire year showed that higher wind velocities compared to the predicted wind speeds from the 10 m high wind velocity, indicating a stable atmosphere. Even the daily variations over seven days in summer months are small during the night time hours (Figure VI.3 of Reference 1, reproduced below).

The data described in Section 2.3.2.2 and presented in Appendix D was further analysed to look at the daily variations in wind speeds. In addition to Goderich weather station, the data from a few more weather stations located within 30 km radius of existing wind farms were compiled by Aiolos Engineering. Figures 2.1 thru' 2.6 show results of one-hour averaged wind speeds from three weather stations near three wind farm sites in southern Ontario. The weather data was collected at a height of 10 m above ground. The daily variations for a few summer days shown in Figures 2.1, through 2.6 seen to indicate substantial variations in wind speeds from day to day. As was explained in Section 2.3, summer data was reviewed as the main hypothesis of van den Berg is that the wind speed discrepancies due to stability classes are severe during the evening and night hours of summer months.


The measurement results of Botha [Reference 22] for four sites in New Zealand and Australia showed contradictory results of wind speed gradient. They will be discussed in Section 4. Hence, the main conclusion here is that the data presented in Chapter VI of Reference 1 is valid only for that one site in Netherlands.


The chapter then calculates expected power production at these velocities as well as calculates noise levels from the wind farm. The results show that the discrepancy for the Cabauw site between stable noise and standard logarithmic wind profiles is of the order of 2 dB. These differences are averaged from one site. The main drawback of the results of this chapter is that they are not transferable to every wind farm site in the world.


One must point out that it may be possible that during summer months stable and very stable conditions may exist at night time producing higher than expected noise levels and hence increasing the impact. However, the data presented so far does not lead one directly to that conjecture.

10

12

Time, Hrs

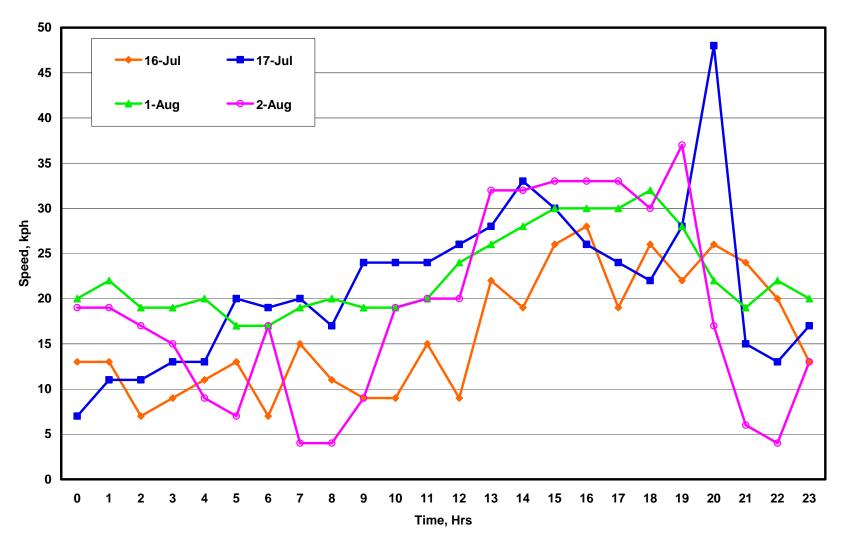

15 16

Figure 2.3 Goderich Wind speeds

20

21

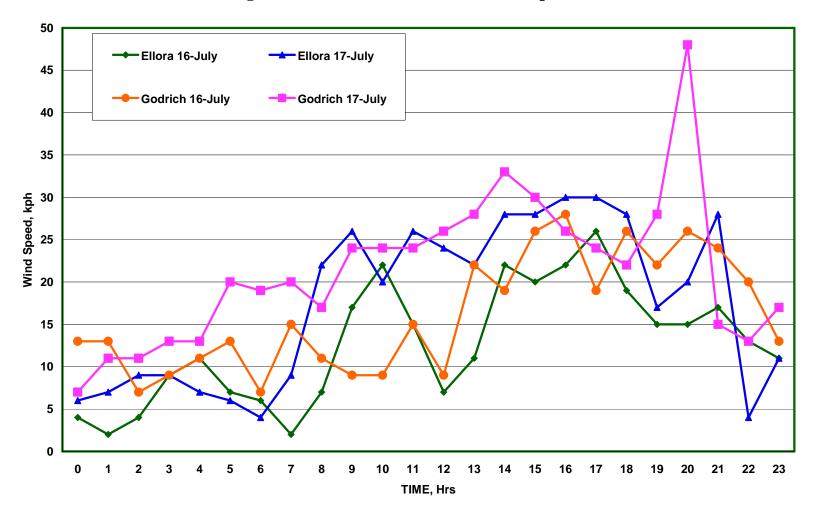


Figure 2.5 Elora and Goderich Wind speeds.

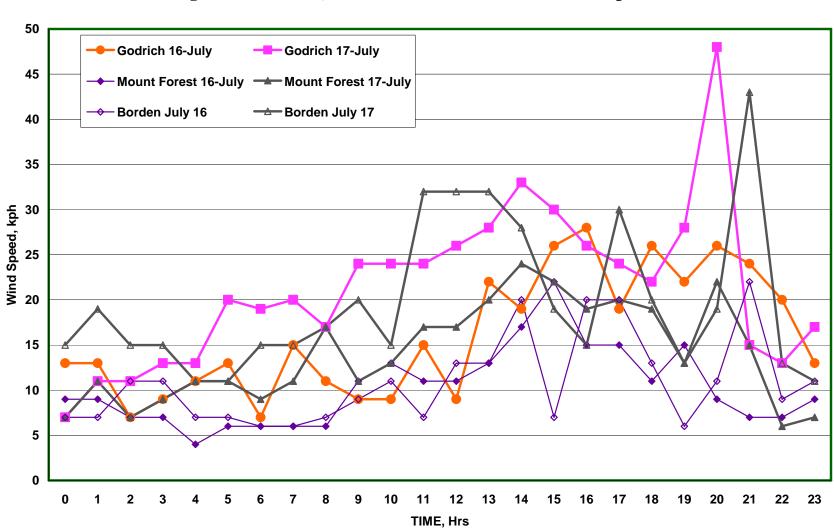


Figure 2.6 Borden, Mount Forest and Goderich Wind speeds.

2.6 SUMMARY

The doctoral dissertation of G. P. van den Berg was reviewed and comments were provided in this section. The dissertation was to provide scientific evidence for increased annoyance from wind farm during evening and night time hours. The review showed the above was not the case and the review comments are summarized below.

One of the main criticisms of the doctoral dissertation of van den Berg is that the conjectures of his research have not been supported by solid scientific data.

The major deficiencies of the doctoral dissertation are highlighted below:

- A) Simultaneous noise measurements and subjective response from a random sample of the residents were not performed other than a few anecdotal responses;
- B) The wind velocities at various heights were not conducted either at the turbines or near them to evaluate the atmospheric classes, but applied weather data from a location 40 kms away;
- C) The wind farm noise levels at receptors were unmanned and the procedure to evaluate the dominance of turbine noise may not be correct.
- D) The immission levels measured at 400 m and 1500 m distances had a large scatter to provide strong conclusions. **NOTE:** It must be pointed out that the receptor noise levels, for a substantial portion of the measurement period, were less than 40 dBA at a location 400 m away and less than 35 dBA at a location 1500 m away.
- E) The *beat* of acoustics is being identified, wrongfully, with amplitude modulations and no strong evidence was provided to show the modulation gets worse at night compared to day time in the summer.

Despite the rather strong conclusions of Reference 1 some of the basic conjectures in the dissertation merit further examination. Hence, the research of van den Berg may be considered as the catalyst that started serious discussion on many aspects of wind farm noise. Future research must therefore provide stronger scientific data to validate these different noise concerns.

3.0 REVIEW OF AVAILABLE NOISE POLICIES AND GUIDELINES

The second task for the current project was to provide an evaluation of the noise policies on Wind Turbine noise applied in jurisdictions other than the Province of Ontario.

The noise policies from different Canadian provinces, USA states and a few other countries were reviewed. The regulations from Germany and the Netherlands were gathered from other review papers. [See for example Reference 18].

General comparison of the noise regulations is presented in Table 3.1.

3.1 WHO GUIDELINES FOR COMMUNITY NOISE (Reference R1)

The community noise guidelines are the result of significant amounts of research in the relationship between noise and health. There is an understanding that noise pollution can be the cause of serious health effects through short term and long term, or cumulative, exposure. The guidelines include the values of what the World Health Organization feels to be the thresholds to health effects in various situations. The limit that has been listed in an outdoor living area, such as around a dwelling, is 50 dBA for moderate annoyance. Once the sound level has increased to 55 dBA, it is considered to be a serious annoyance. For indoors, the World Health Organization recommends the noise level to stay below 35 dBA before moderate annoyance occurs, and below 30dBA to avoid sleep disturbance at nighttime. For conditions at nighttime with an open window, the suggested limit is 45 dBA to avoid sleep disturbance. Many of the documents below reference these guidelines in the justification of selecting certain noise limits, although the Ontario Ministry of the Environment publication does not. They are also widely referred to in other literature relating to noise level limits.

Table 3.1 Comparison of Noise Regulations.

Jurisdiction	Daytime Limit	Nighttime Limit	Background SPL Establishment	Wind Turbine SPL Establishment	Minimum Setback	How Impact is Assessed	
ONTARIO	Whichever is greatest: - Urban Areas, wind speeds below 8m/s: 45 dBA or hourly background level - Rural Areas, wind speeds below 6m/s: 40 dBA or hourly background level - Wind speeds above 8 and 6 m/s each type: wind induced background level LA ₉₀ plus 7dBA or hourly background level		NPC-205 or NPC- 232 whichever is higher	IEC 61400-11, to be provided by manufacturer	N/A	Impact Assessment to ISO 9613 method to be submitted prior to approval for critical points of reception up to 1000 m.	
Alberta	Nighttime + 10 dBA	40 dBA – 56 dBA minimum	Pre-assumed based on proximity to transportation and number of dwellings OR 24 hours, 10 min. intervals in special cases	Modeling at wind speeds of 6 to 9 m/s to achieve worst-case scenario	N/A	Noise Impact Assessment Required to be submitted for application – form given in document Noise measurements, including CSLs recommended for speeds 4 to 6 m/s between 1.2 and 10 m above grade	
British Columbia	40 dBA at residen	40 dBA at residential property		Modeling of 8-10m/s wind speeds at 10m height to be provided by manufacturer	Siting to conform to ISO 9613-2	Risk assessment required if the difference between modeled SPL and acceptable limit is close -Measurements made if complaint is filed	

Jurisdiction	Daytime Limit	Nighttime Limit	Background SPL Establishment	Wind Turbine SPL Establishment	Minimum Setback	How Impact is Assessed
Quebec	Sensitive Land: Type I = 45 dBA Type II = 50 dBA Type III = 55 dBA Non Sensitive Land: Type IV = 70 dBA Dwelling on Industrial Land: 55 dBA	Sensitive Land: Type I = 40 dBA Type II = 45 dBA Type III = 50 dBA Non Sensitive Land: Type IV = 70 dBA Dwelling on Industrial Land: 50 dBA	Length of time to current practiced standards — not specified. Measurements to fully cover reference intervals favoured	N/A	N/A	Measurements taken post- construction to ensure conformity, assess impact
New York (Town of Clinton)	50 dBA or Ambient + 5 dBA		Highest whole number in dBA exceeded for more than 5min per hour (requires independent certification)	IEC 61400-11 or other accepted procedures	- 500 ft from property line or road - 1200 ft from nearest off-site residence - 2500 ft from a school, hospital or nursing facility	Independent certification required before and after construction that noise limits are met.
Maine	Residential: 60dBA Comm/Ind.: 70 dBA Rural: 55 dBA	Residential: 50dBA Comm/Ind.: 60 dBA Rural: 45 dBA	Estimation based on population within 3000m radius or measurements during all hours the development will operate	N/A	N/A	Post-development one-hour equivalent measurements to be made
Pennsylvania	Fifty (55) dBA (note: this is what is in the document, not a typo here)		N/A	AWEA Standard 2.1 - 1989	1.1 x turbine height (consenting) or 5 x hub height (non-consenting)	N/A
Washington	Commercial: 65	Residential: 50 dBA Commercial: 55 dBA Industrial: 60 dBA	N/A (Environmental noise measurement procedure is reserved)	N/A	N/A	Noise measurement only made if a complaint is filed

Jurisdiction	Daytime Limit	Nighttime Limit	Background SPL Establishment	Wind Turbine SPL Establishment	Minimum Setback	How Impact is Assessed
Oregon	Ambient + 10 dB	A	26 dBA assumed	IEC 61400-11	350m minimum, or 1000m non- consenting	
Michigan	55 dBA or L ₉₀ + 5 dBA		55 dBA assumed, not indicated for higher levels	IEC 61400, ISO 9613 (modeling)	1.5 x height of tower including blade in top position	ANSI S12.18 (post construction), ISO 9613 model
Australia	35 dBA or L _{A90, 10} + 5 dBA		Minimum of 2000 data points of background noise and wind speed pairs with a best fit curve	IEC 61400-11, must be overlaid on graph of background sound levels	N/A	Demonstration of compliance at all relevant receivers, if compliance is not demonstrated, operation will be restricted
New Zealand	40 dBA or L ₉₅ + 5 dBA		NZS 6801 (10-14 days of continuous monitoring)	Obtained from Manufacturer	N/A	Measurements taken if necessary, to follow same procedure as background levels
UK (Britain)	L _{90, 10min} + 5 dBA OR 45dBA OR 35-40 dBA	43 dBA or 45 dBA	Minimum 7 days continuous 10 min interval monitoring	IEA Recommended Practice – using 8m/s at 10m height	N/A	Measurements made if complaint filed; no formal impact assessment required
Ireland	45 dBA or L ₉₀ + 5 dBA OR 35-40 dBA if L ₉₀ <35 dBA,	43 dBA	10 minute intervals	N/A	N/A	N/A

Jurisdiction	Daytime Limit	Nighttime Limit	Background SPL Wind Turbine SPL Establishment Establishment		Minimum Setback	How Impact is Assessed
Denmark	45 dBA in open areas 40 dBA near residential		Annex 1 of the document; requires regression analysis of min. of 10 L_{Aeq} values measured for at least one minute each over different wind speeds	EN 45000 standards or min. of 10 L_{Aeq} values measured for at least one minute each over different wind speeds – see Annex 1 of document for full procedure	N/A	- Calculations of noise level at nearest property - Measurements after operation has begun or when deemed necessary, but not more than once per year
Germany	55 dBA/50 dBA in residential areas and 45 dBA in areas with hospitals, health resorts etc.	40 dBA/35 dBA in residential areas and 35 dBA in areas with hospitals, health resorts etc.	N/A	Recommended Practice – using 10 m/s at 10m height	-	- Calculations of noise level at nearest property, using DIN ISO 9613-2.
Netherlands	50 dBA	40 dBA (night) 45 dBA (evening)	N/A	-	-	-

3.2 NORTH AMERICAN NOISE LEVEL LIMITS AS APPLIED TO WIND TURBINES

The situation in North America in terms of noise level limits for wind turbines is currently under development. Many jurisdictions are only beginning to draft standards specifically for wind turbines, and few have gone beyond the draft stage. This is true for both the United States and Canada, where wind is still a relatively under-utilized energy source. There are a number of examples of noise level limits below from the Northern U.S. States, and some Canadian provinces, and they represent the variability from one jurisdiction to the next.

3.2.1 Ontario - Interpretation for Applying MOE NPC Technical Publications to Wind Turbine Generators (Reference R2)

The Ontario Ministry of the Environment has produced a document listing noise requirements for wind turbines. The document segregates development into three separate classes, the first two referring to urban environments, and the third referring to a rural environment. The sound level limits are dependent not only on their classification, but on the wind speed also. Where wind speeds are lower than 8 m/s in an urban environment, the hourly equivalent sound level from the wind turbine facility must not exceed 45 dBA or the hourly background sound level, whichever is greater. Similarly, in a rural environment where wind speed is less than 6 m/s, the hourly equivalent sound level must not exceed the greater of 40 dBA or the hourly background sound level. In the cases where the wind speeds exceed these levels, rather than a fixed limit, the sound level is permitted to be the wind induced background sound level, L_{A90}, plus 7 dBA. This is demonstrated in the Table 3.2 below.

Table 3.2. Ontario Noise Assessment Limits

Wind Speed (m/s)	4	5	6	7	8	9	10	11
Wind Turbine Noise Criterion NPC-232 (dBA) (Rural)	40	40	40	43	45	49	51	53
Wind Turbine Noise Criterion NPC-205 (dBA) - (Urban)	45	45	45	45	45	49	51	53

The noise limits apply to both daytime and nighttime periods, with the level being measured at the nearest point of reception: a location within 30 m of an existing or zoned for future dwelling. After a distance of 1000 m between the wind turbine facility and the point of reception, a detailed noise assessment is not required.

3.2.2 Alberta - EUB Directive 038 Noise Control (Reference R3)

Of all the documents reviewed, the sound level limits for wind farms are perhaps the most complicated to determine in the province of Alberta, Canada. Primarily, the permissible sound level, PSL, depends on the location of the nearest residences. If there are no dwellings within 1.5 km, the limit is a fixed 40 dBA (this corresponds to an increase over the assumed ambient sound level of 35 dBA in rural areas). However, if there are places of residence, the PSL must be determined by the flowing equation:

The Basic sound level is the main component of the sound level limit and ranges from 40 dBA to 56 dBA, depending on the receiving property, and is selected from a table. The daytime adjustment allows the addition of 10 dBA to the PSL during the time period of 7 a.m. – 10 p.m. The other adjustments, Class A and Class B, require technical verification to be applied, and are only done so in specific circumstances. In order to properly determine the ambient noise level and the wind farm development's noise emissions, certain procedures must be followed which are documented in the directive. For example, the ambient sound level measurement requires continuous monitoring over a 24-hour period, 15m away from the nearest dwelling. The environmental conditions at the time of the measurements are also strictly detailed. Although their sound level limits are higher than the MOE limits, similar documentation is required, such as a noise impact assessment.

3.2.3 British Columbia - Land Use Operational Policy: Wind Power Projects (Reference R4)

The British Columbia policy regulating noise from wind turbines enforces a fixed limit of 40 dBA during all hours of the day. This limit is more restrictive than in Ontario, where allowances for higher sound levels are made when the wind speed increases. This limit is to be measured at the exterior of the nearest permanently occupied residence and/or the property line of undeveloped land zoned for future residential use. The siting must conform to ISO 9613-2, which is referenced by other jurisdictions, including Ontario, for use in impact assessment. The modeling is also similar to other jurisdictions, requiring the sound power level (PWL) to be estimated for 8-10 m/s wind speeds at a 10 m height. Should the modeling demonstrate that the estimated level is close to the acceptable limit, the policy requires that a risk assessment be conducted prior to approval. Testing of the sound levels of the facility post-construction is performed if a complaint is filed.

3.2.4 Québec - Instruction Memo 98-01 on Noise (Note: revised as of June 9, 2006) (Reference R5)

Quebec does not have a specific document relating only to wind turbines; the applicable paper discusses noise from all fixed sources. Different limits have been assigned based on the land use of the receiving property and the residual level of noise in the area. The location of measurement is at a distance 3 m or more from reflective structures, and 0.5 m from an open window. All sound levels averaged during a period of one hour must comply with these limits. There are two main categories of land use: sensitive zones (i.e. residential, hospitals, schools) and non-sensitive (agriculture and industrial use) zones. See table below for limits. In the case of a dwelling on agricultural land, the limits for a sensitive zone apply. For dwellings on industrial land, a 50 dBA nighttime limit and a 55 dBA daytime limit will apply. In terms of sensitive areas, the noise limits are comparable to those in Ontario, although there are different levels for day and night. However, an exception is given in the case of industrial and agricultural land, unless a dwelling exists, for the sound level limits to be much higher. The sound that is measured at the receiving property is based on an equation given in the document, accounting for the equivalent sound level of the source, and corrective factors to account for impact noise, tonal noise and

special situations. However, the length of time that applies is up to the discretion of the person performing the evaluation, and should correspond to the current practice methods. Similarly, when measuring background noise, measurements taken that cover the full reference range are favoured, but not required. Post construction, measurements must be taken to ensure the compliance of the facility with the appropriate limits.

Table 3.3 Noise Regulations in Quebec

Zone	Night	Day
I – Sensitive – Single family dwellings, schools, hospitals	40dBA	45dBA
II – Sensitive – Multi-residential and camping areas	45dBA	50dBA
III – Sensitive – Commercial use and park land	50dBA	55dBA
IV – Non-sensitive – Industrial or Agricultural	70dBA	70dBA

3.2.5 Oregon - Revising Oregon's Noise Regulations for Wind Turbines (Reference R6)

Oregon has recently undergone a revision to its existing noise standards, which were last updated in the 1970s. There are two tests, or limits, that apply in the case of wind turbine developments, the Table 8 test (refers to Table 8 in the regulation) and the ambient degradation test. The authors of the revision have taken steps to coordinate their standard with that of the British and Australian guidelines on wind turbine noise. They have assumed a standard ambient background L_{50} of 26 dBA, although extensive documentation can be submitted for background noise greater than this level. The noise level limit is not allowed to increase the ambient noise levels by 10 dBA in any one hour, thus having an assumed limit of 36 dBA, which is lower than the MOE limits. It is also low enough to respect the WHO guidelines for indoor levels without accounting for sound reduction through walls. This limit applies to both daytime and nighttime, just like the MOE limits. However, unlike the Ontario requirements, there are also setbacks that must be adhered to; a minimum of 350 m for a consenting owner, and 1000 m between the nearest wind turbine and the property of a non-consenting owner. The methods of evaluating the sound created by the wind turbine development use the same methods that the majority of manufacturers provide to make things easier. The project must be evaluated under the maximum

sound power level conditions according to IEC 61400-11 (8 m/s at 10 m height), but no correlation between 10 m and hub height is assumed.

Table 3.4 Oregon's Table 8 Limits, dBA

Statistical Descriptor	Daytime (7 a.m. – 10 p.m.)	Nighttime (10 p.m. – 7 a.m.)
L ₅₀	55	50
L_{10}	60	55
L_1	75	60

NOTE: Maximum Permissible levels for New Industrial and Commercial Noise Sources, dBA - As in Bastasch, Noise-Con 2004, originally from OAR 340-35-035.

3.2.6 Pennsylvania - Wind Farm Model Ordinance Draft 12-08-06 (Reference R7)

The draft document developed in Pennsylvania is a model document prepared for the use by different local municipalities. It is not the regulation for the entire state. Local municipalities can use the draft document to prepare their own policies and guidelines. There is only one limit in the Pennsylvania draft, which applies to both daytime and nighttime. The sound level limit is slightly unclear however, because it states that the audible sound "shall not exceed fifty (55) dBA" (note that this has been correctly recorded here, the discrepancy between the written word and the numerical value given in parentheses). This value is much higher than the value given in the MOE regulation, and also equals the WHO recommendation for serious annoyance in an outdoor setting. [See Reference R1]. There is no mention or consideration of ambient sound levels, but waivers to this sound level may be considered. It also does not mention whether this is an hourly limit or not. The point of receiving is considered to be the "exterior of any occupied building on a non-participating Landowner's property." There are also associated setbacks that must be followed. The distance between a wind turbine and the nearest building on the same property must be a minimum of 1.1 times the turbine height. The distance between a turbine and the nearest occupied building on a non-participating property must be at least 5 times the hub height of the turbine. These setbacks exist in response to both safety and noise related issues.

Table 3.5. Pennsylvania Draft Ordinance

	Receiving Property Designation										
Source	Residential (Class A)		Residential (Class A) Commercial (Class B) Industrial (C								
	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime					
Class C	60 dBA	50 dBA	65 dBA	55 dBA	70 dBA	60 dBA					

Note: Daytime is considered to be 7am – 10pm Nighttime is considered to be 10pm – 7am

3.2.7 Washington - Chapter 173-60 WAC Maximum Environmental Noise Levels (Reference R8)

In Washington State, there is no specific regulation for wind turbine noise, so sound levels must comply with the limits in the environmental noise legislation. This results in noise limits that are the highest among those reviewed here (along with Maine), much higher than the MOE limits. Noise level limits are dependant upon the designation, or class, of both the source property and the receiving property. Wind turbines, as a source, would fall under neither Class A, residential, nor Class B, commercial; therefore they would be considered Class C. The hourly sound levels must not exceed the listed measures anywhere within the property line of the neighbouring property. However, it is also mentioned that local governments should adopt their own noise policies. Chapter 173-58 WAC details the proper sound level measurement procedures to follow.

3.2.8 Michigan - Michigan Wind Energy System Siting Guidelines Draft #8 (Reference R9)

The Michigan wind energy draft is meant to apply to smaller local governments and non-urban areas that do not have other existing guidelines in place. There are different guidelines for small, on-site use wind turbines, and larger developments meant for grid energy use.

The Michigan guideline considers the measure of the ambient sound level to be L_{90} and it is assumed to be less than 55 dBA in most cases. The guidelines state that the sound level generated by the turbines should not exceed 55dBA at any property line, unless with written

consent. This level is similar to the one developed by the State of Pennsylvania (see above). During any one hour, this is not to be exceeded for more than three (3) minutes. Should the ambient sound level be greater than 55dBA, then the sound level limit is $L_{90} + 5dBA$, L_{90} as the measured ambient sound level. For demonstration of the compliance to these limits, a submission following IEC 61400 and ISO 9613 methods must be completed for project approval, and within 60 days of the project's completion, the levels must be verified to ANSI S12.18 by a professional third party. The State of Michigan is the only other jurisdiction among those reviewed that requires submission of noise impact according to ISO 9613 like the Ontario MOE requirements. However, the noise level limits are much higher than the MOE limits.

3.2.9 Maine - Chapter 375 No Adverse Environmental Effect Standard of the Site Location Law (Reference R10)

This is another example of a state that has written a standard for use where local governments have not written their own. Local standards take precedence over the state limits unless they contain values over 5 dBA higher for the same situation. As with the Washington sound level limits, the noise limits within this document apply to all environmental noise, including wind turbines, resulting in much higher values. The noise limits apply to new and expanding developments and are measured at the property line, but no specific information is provided on how the sound levels from wind farms are to be modeled. The limits vary based on the zoning of the receiving property or the ambient sound level, and are different for day and night. The noise limits are summarized in the Table 3.6.

Table 3.6 Regulations in Maine

Receiving Property	Daytime Sound Level Limit (7am – 7pm)	Nighttime Sound Level Limit (7pm – 7am)
Any location that is not zoned for commercial, transportation or industrial	60 dBA	50 dBA
Any location that is zoned for commercial, transportation or industrial	70 dBA	60 dBA

These limits apply unless the ambient sound level prior to development is equal to or less than 45 dBA during the daytime hours and 35 dBA during the nighttime hours, such as in a rural environment. Should this be the case, the limits are required to be 55 dBA during the day and 45 dBA during the night; a 10dBA increase, regardless of the zoning of the receiving property. There are two methods allowed to demonstrate the level of the ambient sound, by performing measurements, or, if the population within a 3000 m radius of the property is greater than 300 people, the state allows the assumption that the ambient level exceeds 45 dBA during the day and 35 dBA at night. Additionally, if it can be proven that the development will not emit sound levels greater than 50 dBA during the day and 40 dBA during the night, there is no requirement to estimate or measure the sound levels.

There are further requirements for short duration repetitive sounds and tonal sounds. There are also regulations on the personnel carrying out the measurements, the instrumentation and calibration necessary, and the location, configuration and environment conditions for the microphones, but not necessarily in the specific case of applying the measurements to wind farms.

3.2.10 New York - Power Naturally: Examples of NY Local Government Laws/ Zoning Provisions on Wind (Reference R11)

The state of New York does not have a standard for wind turbine noise, but relies on local governments to develop their own, which many have. The town of Clinton, NY, is one such municipality, and is a good indication of what the standards in New York State are like. The limit, which applies at any time of the day, is $L_{10} \le 50 dBA$, meaning that in any one hour, 50 dBA can be equaled or exceed only ten percent of the time. The sound level is measured at the nearest residence, located off-site, which may or may not include more than one property. If the owner consents to a higher threshold of noise, a waiver can be granted allowing an increase to the noise level limit. If the ambient sound, which is defined as the highest whole number in dBA exceeded for more than 5 minutes per hour, is greater than 50 dBA, then the sound level limit is the ambient sound level plus 5dBA. These levels are higher than the MOE limits, but remain

just below the level of moderate annoyance for outdoor noise of 50dBA listed in the WHO Community Noise document.

3.3 Noise Limits from Europe

Europe has long been at the forefront of developing and utilizing wind energy as an energy source. It is not surprising that they have been able to develop noise limit standards to a higher degree than North America. It does not mean that they are more complicated; in fact, they are often simpler than North American noise limits. The following are some examples of noise level limits of wind farms from European countries.

3.3.1 UK - ETSU-R-97: The Assessment and Rating of Noise from Wind Farms (Reference R12)

The document produced by the Working Group on Noise from Wind Farms is perhaps the most comprehensive document of all the ones reviewed here. It covers the history and philosophy of developing noise limits, as well as a thorough explanation of the current limits. The document regulates a separate limit for daytime and nighttime noise levels. These are in part based on the background noise level, $L_{A90,\ 10min}$, which is determined by continuous monitoring of ten minute intervals over a period of time, correlated with different average wind speeds measured over the same period. There is no distinction between zoning or the use of the receiving property as in the Ontario MOE limits.

The principle of the limits is that the wind farm noise is limited to 5 dBA above the wind dependent background noise level, subject to a minimum value at low wind speeds. During the daytime, this minimum value in low noise environments is not to be lower than a range between 35 dBA and 40 dBA, depending on the number of dwellings and the effect on the amount of energy produced. At night, this minimum value is 43dBA. Both of these limits are recommended to be increased to 45 dBA in cases where there is financial benefit to those involved. As with other standards, a 5 dB penalty is incurred if tonal characteristics occur. Should this appear to be the case, a tonal assessment must be performed, consisting of 2 minute

measurements. The document does not require an impact assessment of the development to be submitted.

3.3.2 *Ireland - Wind Energy Development Guidelines* (Reference R13)

Ireland has adopted noise limits that are similar to the UK limits for wind turbines. The daytime limit is allowed to be the maximum of 45 dBA or 5 dBA above the background level, L₉₀. However, if the current level of background noise is very low, below 30dBA, the noise level limit will fall in the range of 35 dBA to 40 dBA. The standard does not state how this limit will be determined. The nighttime limit is fixed at 43dBA. These noise levels are comparable to the Ontario MOE limits. The Irish Guidelines have no set-back limits. Instead it states and we quote, "In general noise is unlikely to be a significant problem where the distance from the nearest turbine to any noise sensitive property is more than 500 m." [Reference R13). The document has stated that in order to determine the ambient sound level, measurements should be taken at ten minute intervals, however, it has not dictated how the wind farm noise level should be predicted or what steps to determine the impact of the wind farm should be taken.

3.3.3 Denmark - Document: Statutory Order From the Ministry of the Environment No. 304 of May 14, 1991, On Noise From Windmills (Reference R14)

Denmark's noise limits are fixed, ambient conditions having no effect, and apply to both daytime and nighttime with no distinction. This is in contrast to the MOE limits, which may depend on both the wind speed and the hourly background level; however, the actual sound level limits have a direct comparison to Ontario's. When the wind farm is located in the open country, the outdoor sound level limit is 45 dBA at the nearest neighbouring property, considered to be any residential building other than the "private house of the windmill owner". For wind farms closer to residential areas, the fixed limit is 40 dBA.

3.3.4 Germany - Document: Lärm (Techniche Anleitung Lärm, Germany), 1998 (Reference R15)

Areas with hospitals, health resorts etc.

35 dBA

The German noise limits are defined in the above document and are outlined in Table 3.7 below.

Area Day Time Night Time

Industrial Area 70 dBA / 65 dBA 70 dBA / 50 dBA

Mixed residential area and industry or Residential areas mixed with industry

Purely residential areas with no commercial developments

55 dBA / 50 dBA 40 dBA / 35 dBA

Table 3.7. German Noise Regulations.

Calculation of sound propagation is done according to ISO 9613-2. All calculations have to be done with a reference speed of 10 m/s at 10 m heights.

45 dBA

3.3.5 Netherlands: Bseluit van 18 oktober 2001, houdende regels voor voorziengen en installaties; Besluit voorziengen en installaties milieubeheer; Staatsblad van het Koninkrijk der Nederlanden 487 (Reference R16)

Noise regulations specific to wind turbines in the Netherlands were issued in 2001, but are currently under review by the Dutch authorities. The 2001 wind farm noise limits followed a wind speed dependent curve and are shown in Table 3.3.2 for night time noise limits. The limit for day time started at 50 dBA and for evening hours, the limit started at 45 dBA and increased to 50 dBA for a speed of 12 m/s.

Table 3.8. 2001 Netherlands Noise Assessment Limits – Night time.

Wind Speed at 10 m height (m/s)	1	2	3	4	5	6	7	8	9	10	11	12
Wind Turbine Noise Criterion, dBA	40	40	41	41	42	42	43	44	46	47	48	50

As noted above, the 2001 assessment process is currently under review. In the interim, the Dutch authorities use their established general limits, not specific to wind turbines, of 40 dBA (night), 45 dBA (evening) and 50 dBA (day).

3.4 WIND FARM NOISE LIMITS FROM AUSTRALIA AND NEW ZEALAND

The wind farm noise limits of these two countries relate more to those of the European countries rather than North America. They require extensive data collection for the determination of ambient sound levels, and the sound level limits themselves are among the lowest, being developed in accordance with the World Health Organization document Guidelines for Community Noise. The standards as written are much more detailed in their requirements, and thus are of great value when reviewing noise standards for wind farms.

3.4.1 Australia - Planning Bulletin 67: Guidelines for Wind Farm Development and Environmental Noise Guidelines: Wind Farms (References R17 and R18)

There are documents from both Western and Southern Australia; however, there is only one set of noise limits since the Western Australia guidelines reference the South Australian noise limits. The South Australian guidelines have elected to define fixed limits that must be followed, and are among the strictest that are reviewed here. The limit during the daytime is 35 dBA or the background noise plus 5 dBA, $L_{A90, 10} + 5$ dBA. The other jurisdiction that has a comparable noise level limit is the American state of Oregon. Both Australia and Oregon have limits that are more strict than Ontario. In order to determine the ambient levels, extensive data collection of noise levels over continuous 10-minute intervals must be examined according to a regression analysis. Wind speeds must be measured at 10m above the ground and also analyzed over the same periods. In order to determine the sound level limit compliance, the sound is measured not at the property line, but at a distance of up to 20 m away from the nearest house. In addition, demonstration is required that shows the operational sound levels do not exceed the

predetermined limits or else restrictive measures may be taken to limit the operation of the wind farm.

3.4.2 New Zealand - NZS 6808: 1998: Acoustics - The Assessment and Measurement of Sound From Wind Turbine Generators (Reference R19)

New Zealand also has a fixed sound level limit, as with other countries. At any residential home, the sound level limit outside of the house must not exceed 40 dBA. This limit has been selected to achieve an indoor sound level that corresponds to the values recommended in the WHO Guidelines for Community noise. If the background noise, L_{95} , exceeds 35 dBA, then the sound level limit is permitted to be $L_{95} + 5$ dBA. These levels are higher than the strict limits of Australia and Oregon, and are comparable to the Ontario and Danish sound level limits. This limit is to apply at the property line of the nearest residential property, or the "notional boundary" if the dwelling is located on a large rural property. The standard allows the sound levels from the wind farm development to be estimated using the sound power levels supplied by the manufacturer, but for determination of the ambient sound levels, extensive data collection over a period of ten to fourteen days is required. Post-installation verification is not always required by the standard.

3.5 DISCUSSION

The assessment of wind farm noise and their impact on sensitive receptor locations as applied in different jurisdictions were described above. The main differences between the different regulations and guidelines are twofold:

- a) The acceptable noise limits; and
- b) The evaluation of receptor noise levels from the cumulative operation of the turbines in the wind farm.

The commonality among the regulations and guidelines is quite striking. All of them accept the IEC Standard 61400-11 (Reference 26) procedures to establish the sound power levels of wind turbines as well as the determination of the hub-height and/or the 10 m high wind speeds within

the operating range of the wind turbines. In addition, none of them consider the effect of atmospheric classes on night time operational character of the wind farm such as higher-than-expected wind speeds at hub-height compared to the conventional wind-shear prediction methodologies.

It is seen therefore, that the main difference between the regulations and guidelines is the noise limits and hence a comparison table is given below in Table 3.8 below. Table 3.8 summarizes only the night time noise limits. Note that direct comparisons of limits may not be appropriate as different jurisdictions have different legal, procedural and assessment frameworks.

Table 3.8. Approximate Ranking of Noise Regulations (Night time limit, dBA).

Jurisdiction	Noise Limit, dBA			
Australia	35 and adjusted higher with wind speeds			
Germany and Oregon, USA	35 to 36			
Alberta, British Columbia, Quebec, Denmark, and Netherlands (Interim)	40			
United Kingdom, Ireland, Ontario and New Zealand	40 and adjusted higher with wind speeds			
New York, Maine, Pennsylvania and Washington, USA	50 and higher			

3.6 SUMMARY

Regulations and guidelines from different jurisdictions in North America, Europe and Australasia were highlighted in this section. These are some of the examples of different assessments of noise impact from wind turbines and wind farms. It was shown that some jurisdictions have special legislation concerning wind turbines, while others apply general recommendations. Different descriptors such as L_{Aeq} or $L_{A90, 10 \text{ min.}}$ were used to quantify wind turbine noise levels. The noise levels could be either absolute values or related to the background noise level. The background noise levels could be standardised, measured or related to ambient wind speeds. The review of the regulations and guidelines of the jurisdictions investigated showed that the Ontario, Canada assessment process is similar to other jurisdictions.

4.0 REVIEW OF AVAILABLE LITERATURE

A substantial portion of information, both scientific and non-scientific is available in the open literature. The literature review focussed mainly on the following:

- I) Metrological effects on wind turbine noise generation;
- II) Assessment procedures of wind turbine noise levels and their impact;
- III) Particular characteristics of wind farm noise; and
- IV) Human responses to wind farm noise levels.

NOTE: The literature review did not consider material that was available after June 2007.

The exact noise generation mechanisms of wind turbines and control techniques of wind farm and turbine noise were not reviewed by the current investigations. Relevant databases such as journals through ScholarsPortal, internet and conference proceedings were searched for the literature. Proceedings from a few conferences were searched also. It must be pointed out that conference papers are usually accepted without proper peer-reviews. Only a few articles were available and are listed in the main reference list. The results of the review are summarized below.

4.1 METEOROLOGICAL EFFECTS

The paper by P. Botha of New Zealand has shown the effects of weather conditions on wind speed profiles with height (Reference 22). This is the only paper, to our knowledge, that has scientifically shown variation of wind speeds with heights from measurements conducted at four sites – two (2) in New Zealand and two (2) in Australia. The measurements were conducted for a period of one year. The two Australian sites (Sites 1 and 2) were flat terrain and the two New Zealand sites (Sites 3 and 4) were complex terrain. Wind speeds were collected in 10 minutes intervals and the composite results from Reference 22 are reproduced below as Figure 6.1.

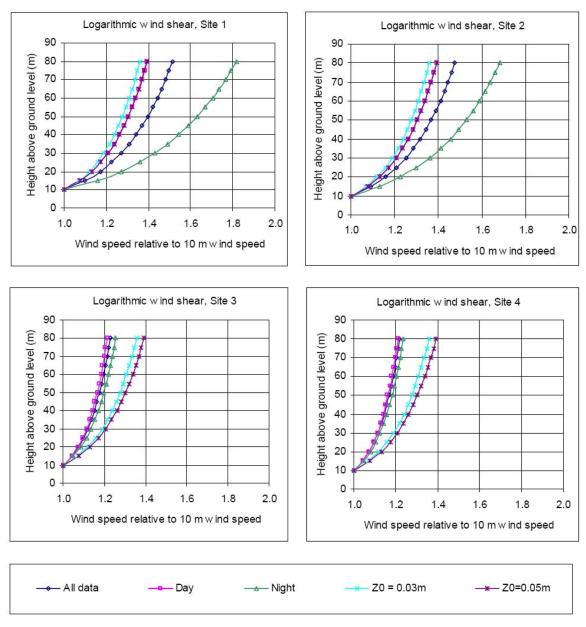


Figure 4.1. Wind speed profiles at 4 different sites (From Reference 22 – Figure 1)

Five graphs were plotted for each site: Composite profile for all day data, profile for day data, profile for night data, IEC standard logarithmic profile with the shear coefficient from observed site conditions ($Z_0 = 0.03$) as well as the standard shear coefficient, Z_0 , of 0.05. The results do indicate that for some terrains, the hub-height wind speeds can be more at night time than during

day time when compared to the 10 m height wind speeds. However, the local conditions determine the meteorology and one cannot, as analysed by van den Berg, apply information from far-off sites to local conditions. Further, for the terrains in Australia, the Sound Power Levels at night time would be around 2 dBA more than predicted from standard procedures from day time profiles. It must also be highlighted that the measurements of Reference 22 clearly showed the wind profiles were nearly identical between day and night time for the complex terrains of New Zealand.

The main conclusions of this section are: a) wind shear is an important parameter that must be accounted for appropriately in any assessment; and b) the effect of meteorology is highly localized and strong conclusions cannot be easily transferred from site to site.

4.2 ASSESSMENT PROCEDURES OF WIND TURBINE NOISE LEVELS

Papers by Botha (Reference 22), Sloth (Reference 23) and Sondergaard (Reference 24) are examples of work undertaken to look into the assessment procedures currently applied in many jurisdictions. These three papers evaluate the application of sound power levels of wind turbines standardized to a 10 m height wind speed. The main conclusion of these papers is that the normal procedure of basing the analysis and assessment on the standardized sound power levels is not sufficient. Sloth shows a method to incorporate the relevant sound immission data with appropriate uncertainties accounted for so as to minimize noise annoyance. One such method is suggested in Appendix F. Sonderggard has also pointed out that additional research is required to account for many of these deficiencies. References 27 and 28 showed that many of the propagation models have uncertainties associated with them and can produce "less than accurate" results if local weather conditions are not properly modelled.

One of the main criticisms about noise assessment process of wind farm application is that the sound power levels of wind turbines are measured and reported following the procedures of the IEC-Standard [Reference 26]. It must be noted that the IEC 61400-11 standard for wind turbine noise is a measurement standard and is primarily intended to define how manufacturers obtain

and report the sound power from wind turbines under standardized wind shear conditions. It does not prevent one from adjusting the sound power to reflect the actual site specific wind shears obtained from testing.

4.3 PARTICULAR CHARACTERISTICS OF WIND FARM NOISE

Two main issues are usually discussed regarding the source characteristics of noise generated by wind turbines – low frequency or infra sound and the swishing (thumping) sound normally termed as the amplitude modulation phenomenon.

The measurement results from wind turbines, such as the data reported by van den Berg (Reference 1) and Howe and McCabe (Reference 28) show the absence of significant low frequency components and the same conclusion is highlighted by Regan and Casey ((Reference 25) in their primer on wind turbine noise aspects. The results of Reference 1 (van den Berg's dissertation) show that the infra-sound levels, even if present, are well below the threshold of perception.

The nature of the amplitude modulation phenomenon and its relationship to the acoustical beating phenomenon was already discussed in Section 2.4. The different principles of these phenomena will not be discussed further. Due to the nature of the amplitude modulation phenomenon, the swishing or thumping exists all the time. Only van den Berg has attempted to show that the modulation gets stronger at night time. Our review of van den Berg's work was presented in Section 2. We were unable to find other works in the literature that provide evidence for increased modulation at night time. The only effect, discussed in the next section, of the phenomenon is the modulated sound becomes audible at night time. This could be due to quieter ambient sound at night time. As Reference 18 states, "In summary, the modulation in the noise from wind turbines is not yet fully explained and will not be reduced in the near future and is therefore a factor of importance when discussing noise annoyance from wind turbines."

Reference 30 has addressed the issues connected with modulation. One of its principal findings is and we quote, "the common cause of complaint was not associated with low-frequency noise,

but the occasional audible modulation of aerodynamic noise, especially at night. Data collected showed that the internal noise levels were insufficient to wake up residents at these three sites. However, once awoken, this noise can result in difficulties in returning to sleep." Reference 30 does not use the term "beating" to describe the amplitude modulation that has been observed as well as measured. It has been referred to simply as "aerodynamic modulation." Reference 30 also points out that the many mechanisms hypothesized by van den Berg (Reference 1) for the modulation behaviour are debatable. It was shown in Section 2 during the current investigation that the data provided by Reference 1 do not support its findings. Further, no support was seen for the modulation behaviour to get stronger under stable atmospheric classes at night time as postulated by van den Berg. The same points were presented in Section 2 of this report. Finally, Reference 30 discussed the many possible mechanisms that can cause the amplitude modulation as well as provided measurement results to show that modulation can produce changes in noise levels of the order of 10 dB. It concluded that detailed research is required to settle many of the unknowns that can cause the amplitude modulation.

4.4 HUMAN RESPONSES TO WIND FARM NOISE LEVELS

A considerable body of literature is available on this subject, both scientific and anecdotal. Only a few of the scientific and review articles, References 5, 12, 18, 20, and 25, are highlighted in the current study.

According to Reference 25, the only health effect of wind turbine noise is annoyance. Sheppard et al. (Reference 12) conducted a laboratory study with unbiased subjects and played different sounds including wind turbine noise at various levels. Since the study was conducted in early 80s, the old type wind turbines were included in their investigations. Their study developed a human response criterion for wind turbine generators based on receptor received noise levels and termed it 'Perception Detection Threshold.' The study showed that the thresholds for wind turbine noise were below the thresholds of general tones. After validating the usefulness of the response function, the following annoyance table, based on an old ISO standard, now defunct,

was recommended to evaluate the community response. The annoyance table is presented in Table 4.1 below.

Table 4.1 Estimated Community Response to Wind Turbine Generator Noise (From Reference 12 – Figure 12 of Reference 12, based on an ISO standard)

Amount in dB by which the rated noise exceeds Threshold Level	Estimated Community Response			
	Category	Description		
0	None	No Observed Reaction		
5	Little	Sporadic Complaints		
10	Medium	Widespread Complaints		
15	Strong	Threats of Community Action		
20	Very Strong	Vigorous Community Action		

NOTE: Rated Noise Level – The actual noise level that would be measured at the receptor locations;

Threshold Level – The average ambient sound level that would exist in areas around the wind farm site.

A study, similar to that of Sheppard (Reference 12) is required to evaluate the detection threshold for modern wind turbines.

The annoyance study of Pedersen and Waye concluded that annoyance increases with sound levels. However, these annoyance studies have very small sample sizes and focussed on subjects living close to wind farms. No blind survey was conducted. Only 65 of the 356 respondents were exposed to noise levels of 37.5 dBA and above. The following categories – perception, dose-annoyance, sensitivity, attitude to source, visual exposure and rural setting – were included in the survey. The correlation between most of the categories and noise levels were small. The noise level and annoyance response was proportional to the exposure level. However, the sample size was too small. The subjects had prior exposure to wind turbines, making the sample biased. It must be acknowledged that the research of Pedersen and Waye has provided important insights into the human response of wind turbine noise and has considered important parameters.

However, the work of Pedersen and Waye need to be expanded to include large enough samples with unbiased subjects.

Finally, one of the arguments presented by anti-wind farm proponents is that 'beating' increases human annoyance. The only result that can be culled from the literature, Reference 18, is that the modulation frequencies, 0.5 to 1 Hz for wind turbines, are such that the wind turbine noise can be detected. Since major studies on wind turbine beating and human annoyance have not been conducted, major conclusions are not possible at this stage.

4.5 SUMMARY

Available literature on wind turbine noise was reviewed and the review focussed on four categories, considered important to the Ministry's stated goals. The results of the review were presented in this section. The main findings of this section are:

- A) The local terrain conditions can influence meteorological conditions and can affect the expected noise output of the wind turbines;
- B) Assessment procedures applied in different jurisdictions are quite similar in their scope;
- C) Wind farm noise do not have significant low-frequency (infrasound) components;
- D) Further study needed in order to determine effect of modulation on human annoyance.

5.0 REVIEW OF MOE'S NOISE POLICIES AS APPLIED TO WIND FARM NOISE

The Ministry of the Environment released a guideline document, "Interpretation for Applying MOE NPC Technical Publications to Wind Turbine Generators" in 2004. The above guidance document was to assist proponents of wind turbine installations in determining the list of necessary information to be submitted when applying for a Certificate of Approval (Air and Noise) under Section 9 of the *Environmental Protection Act*. A summary of these interpretations by John Kowalewski was also published in the Canadian Acoustics Journal (Reference 33). The noise guidelines in MOE publications NPC-205/NPC-232 as well as the wind generated noise levels were applied to set the noise limits. These three documents are enclosed in Appendices A, B and C.

5.1 MOE'S ASSESSMENT PROCESS

The assessment procedures of MOE are summarized below for completeness sake:

- All wind farm applications must obtain a Certificate of Approval from MOE. If individual wind turbines have a capacity of 2 MW or more, the project must undergo an Environmental assessment review;
- II) If there are no receptors within 1000 m of the wind farm boundary, no detailed noise assessment is necessary;
- III) The noise limits are established based on the location of the receptors in Class 1 & 2 areas and Class 3 areas.
- IV) The sound power levels of the wind turbines are to be obtained from the standard procedures contained in IEC Standard 61400-11, by applying the wind speeds at 10 m height above ground. [Reference 26].
- V) The sound pressure levels at each receptor location are to be evaluated applying the procedures of ISO 9613.

VI) The noise impact is assessed by comparing the predicted noise levels at individual receptor location with the noise limits established in Step III. The noise impact is evaluated at each wind speed over the operating range of the wind turbine specifications.

The noise limits are wind speed dependent and are summarized in Table 5.1 below.

Table 5.1 Ontario Noise Assessment Limits

Wind Speed (m/s) @ 10 m height	4	5	6	7	8	9	10	11
Wind Turbine Noise Criterion NPC-232 (dBA) (Rural) – Class 3 Areas	40	40	40	43	45	49	51	53
Wind Turbine Noise Criterion NPC-205 (dBA) (Urban) – Class 1 & 2 Areas	45	45	45	45	45	49	51	53

The MOE procedures outlined in Appendix A do not explicitly discuss the application of penalties for source character or apply particular meteorological conditions.

The MOE's assessment process is very similar to the procedures applied in the New Zealand (Reference R19), as it recognizes the usefulness of masking effects of ambient wind. The implicit assumption is that it is the ambient wind that generates the noise of wind turbines as well as background noise levels at receptor locations.

The Ministry's noise assessment guidelines for stationary sources of sound are based on the premise that noise from the stationary sources may be annoying when it is audible over and above the level of the so-called "ambient" or surrounding environmental "noise climate" at a particular location. However, audibility does not necessarily mean annoyance. Furthermore, annoyance is not the same for the entire population; people at the extreme of the statistical distribution may be annoyed at different noise levels. Such an approach was considered a 'sound' policy from the inception of the Model Municipal Noise Control by-Law issued by MOE in August 1978. The policies provide adequate protection from adverse noise pollution impacts as well as not imposing restrictive conditions on industrial noise sources. However, the MOE's

assessment, even though has provided a very simple procedure, has been very general in its overall scope. Two issues need to be resolved and are highlighted below.

5.2 Penalty for Source Character

The guideline document that deals with noise assessment of wind turbines, enclosed in Appendix A, does not explicitly discuss penalties for characters such as tonal components of the wind turbine noise levels, even though reference to NPC-104 is included in the interpretation document. Further, the Ministry document, NPC-205 (enclosed in Appendix C) contains guidelines for penalties, which must be used if a particular wind turbine was found to contain tonal components. The implicit assumption is that the modern up-wind wind turbines have no dominant tones in their spectrum. It must be pointed out that most of the measurement results do show that the turbine noise spectrum is devoid of dominant tones. However, MOE needs to clarify and include source character adjustments in the main body of the interpretation document and even make references to the procedures contained in the IEC Standard (Reference 26) that are used to determine the presence of tones in the noise spectrum.

5.3 METEOROLOGICAL CONDITIONS

One of the main arguments posed by van den Berg (Section 2) is that meteorological condition affect wind speed profiles with height and that the hub-height wind speed may be higher than predicted with the 10 m high wind speed being low. It was made clear in the review presented in Section 2 that the evidence presented to support these arguments were tenuous at best. However, the works of Botha (Reference 22) and Sondergaard (Reference 24) showed that local terrain conditions can dictate the wind profiles and the measurements of Reference 22 has shown that in flat terrains, the wind speed profile with height cannot be predicted accurately by standard methods such as the logarithmic shear function applied in Reference 26.

It is therefore, possible that, for a 'worst-case scenario', the hub-height velocities can be higher than expected thereby resulting in higher-than-expected noise levels with lower masking effect of the ambient wind at receptor locations. Some preliminary evaluations presented in Reference 32 showed that discrepancies of the order of 3 dBA are possible. Such a scenario needs to be accounted for in the Ministry's future updates of the assessment procedures. One example of a possible assessment procedure is described in Appendix F.

5.4 SUMMARY

The assessment procedures, currently, applied in the Province of Ontario by the Ministry of the Environment to evaluate wind farm noise levels were reviewed. The results showed that the procedures may have to be revised to incorporate additional factors. One possible assessment process is suggested Appendix F.

6.0 CONCLUSIONS

As part of the review process of their assessment procedures, the Ministry of the Environment for the Province of Ontario has instituted a work project with different tasks. Four individual tasks were part of the review process.

The results of each of the tasks were presented in the previous sections. The conclusions for each of the tasks were included at the end of the relevant sections. The basic conclusions are summarized below:

- A) The research work undertaken by G. P. van den Berg didn't provide scientific evidence to support the few major hypotheses postulated concerning the wind turbine noise characteristics. However, the work of other researchers showed that local terrain conditions can impact the local meteorology and thereby the resulting noise levels;
- B) Assessment procedures applied in different jurisdictions showed the current Ministry of the Environment process is similar to other jurisdiction. Further, the MOE process has provided a balanced approach between noise impact and the need for wind farms, based on currently available scientific data.
- C) Literature review showed that additional research is still required to make definitive conclusions about wind turbine noise impacts as well as human response to wind farms. In addition, detailed research on meteorological conditions, and their impact on sound generation needs to be undertaken to realise definitive conclusions;
- D) The Ministry of the Environment's procedures to assess wind farm noise levels follow a simple procedure that is sound for most situations. However, additional concerns still need to be addressed in the next round of revisions to their assessment process. These revisions may need to be addressed after the results from future research provide scientifically consistent data for effects such as meteorology, human response and turbine noise source character.

REFERENCES

GENERAL REFERENCES

- 1. G.P. van den Berg. "The Sounds of High Winds: the effect of atmospheric stability on wind turbine sound and microphone noise." Doctoral dissertation, University of Groningen, Netherlands, May 2006.
- 2. G.P. van den Berg. "Effect of the wind profile at night on wind turbine sound." Journal of Sound and Vibration, Vol. 277(4), 2004.
- 3. G.P. van den Berg. "Wind Gradient Statistics Up to 200m Altitude over Flat Ground." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 4. G.P. van den Berg. "Mitigation Measures for Night-time Wind Turbine Noise." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 5. E. Pedersen and K.P. Waye "Human Response to Wind Turbine Noise Annoyance and Moderating Factors." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 6. Geoff Levanthall. "How The 'Mythology' of Infrasound and Low Frequency Noise Related to Wind Turbines Might have developed." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 7. Mark Bastasch. "Regulation of Wind Turbine Noise in the Western United States." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 8. Mark Bastasch. "Revising Oregon's Noise Regulations for Wind Turbines." Proceedings of Noise-Con 2004, Baltimore, July 2004.
- 9. Ministry of the Environment, "Request for Services for Expert Advice on Wind Turbine Facilities Noise Issues." April 23, 2007.
- 10. Ministry of the Environment, "Interpretation for Applying MOE NPC Technical Publications to Wind Turbine Generators." PIBS 4709e, 6 July, 2004.
- 11. Harvey H. Hubbard et al. "Noise Characteristics of Large Wind Turbine Generators." Noise Control Engineering Journal, Vol. 12 (1), 1983.
- 12. Kevin Sheppard et al. "Evaluation of Human Exposure to the Noise from Large Wind Turbine Generators." Noise Control Engineering Journal, Volume 12 (1), 1983.
- 13. Mark Bastasch, Jeroen van Dam, Bo Søndergaard and Anthony Rogers. "Wind Turbine Noise An Overview." Canadian Acoustics Journal. Special issue on Wind Turbine Noise. Volume 34(2), June 2006.
- 14. Geoff Leventhall. "Infrasound from Wind Turbines Fact, Fiction or Deception." Canadian Acoustics Journal. Special issue on Wind Turbine Noise. Volume 34(2), June 2006.
- 15. K. D. Kryter. "The Effects of Noise on Man." Academic Press. 1970.
- 16. Bradley, J.S., "NEF Validation Study: Review of Airport Noise and Its Effects," Report A-1505.5 (Final), 149 pages, December 1996.
- 17. A. D. Lightstone, "Environmental Noise Assessment of Wind Farms." Canadian Acoustics Journal. Special issue on Wind Turbine Noise. Volume 34(2), June 2006.