

GL Garrad Hassan

RENEWABLE ENERGY APPROVAL APPLICATION – NOISE IMPACT ASSESSMENT

ADELAIDE WIND ENERGY CENTRE, ONTARIO

Client NextEra Energy Canada, ULC Contact Ben Greenhouse 1009-CAMO-R-04 Document No. Issue D Status Final Classification Client's Discretion Date 12 October 2012 Author A. Nercessian

Checked by Manufield

M. Le Roux

Approved by

D. Eaton

GL Garrad Hassan Canada, Inc.

IMPORTANT NOTICE AND DISCLAIMER

1. Acceptance of this document by the Client is on the basis that GL Garrad Hassan Canada, Inc. (hereafter "GL GH"), a GL Group member operating under the GL Garrad Hassan brand, is not in any way to be held responsible for the application or use made of the findings and the results of the analysis herein and that such responsibility remains with the Client.

This Report shall be for the sole use of the Client for whom the Report is prepared. The document is subject to the terms of the Agreement between the Client and GL GH and should not be relied upon by third parties for any use whatsoever without the express written consent of GL GH. The Report may only be reproduced and circulated in accordance with the Document Classification and associated conditions stipulated in the Agreement, and may not be disclosed in any offering memorandum without the express written consent of GL GH.

GL GH does not provide legal, regulatory, insurance, tax or accounting advice. The Client must make its own arrangements for consulting in these areas.

This document has been produced from information as of the date hereof and, where applicable, from information relating to dates and periods referred to in this document. The Report is subject to change without notice and for any reason including, but not limited to, changes in information, conclusion and directions from the Client.

2. This Report has been produced from information relating to dates and periods referred to herein. Any information contained in this Report is subject to change.

KEY TO DOCUMENT CLASSIFICATION

Strictly Confidential For disclosure only to named individuals within the

Client's organization

Private and Confidential For disclosure only to individuals directly concerned

with the subject matter of the Report within the

Client's organization

Commercial in Confidence Not to be disclosed outside the Client's organization

GL GH only

Not to be disclosed to non-GL GH staff

Client's Discretion Distribution for information only at the discretion of

the Client (subject to the above Important Notice and

Disclaimer)

Published Available for information only to the general public

(subject to the above Important Notice and Disclaimer)

© 2012 GL Garrad Hassan Canada, Inc.

REVISION HISTORY

Issue	Issue Date	Summary
A	23 December 2011	Original Release (electronic version only)
В	13 January 2012	New octave band spectrum for turbine
C	14 August 2012	Updated receptor list and turbine sound levels
D	12 October 2012	Responses to MOE comments

TABLE OF CONTENTS

1	INTRODUCTION								
2	GEN	NERAL	DESCRIPTION OF PROJECT SITE	2					
	2.1	Genera	al Characteristics	2					
	2.2 Land Use Description								
	2.3 Points of Reception								
3	DES	CRIPT	ION OF POINTS OF RECEPTION	4					
	3.1	Recep	tor Classes	۷					
	3.2	Detern	nination of Applicable Noise Limits	4					
		3.2.1	Wind Turbine Installations in Class 3 Areas (Rural), Wind Speeds Below 6						
		3.2.2	m/s Class 3 Areas, Wind Speeds above 6 m/s	4					
4	DESCRIPTION OF SOURCES								
	4.1	ne Description	(
5	WIN	ND TUR	BINE NOISE EMISSION RATING	7					
	5.1	Noise	Emission Rating of the Adelaide Wind Farm Turbines	7					
	5.2	Noise	Emission Rating of the Adjacent Napier Wind Farm Turbines	8					
	5.3	Noise	Emission Rating of the Substation Transformer	8					
6	NOI	SE IMP	PACT ASSESSMENT	10					
7	NOI	SE IMP	PACT ASSESSMENT SUMMARY TABLE	11					
	7.1	Result	s	11					
8	CON	NCLUSI	ON	22					
9	REF	ERENC	CES	23					
APPENDIX A ZONII			ZONING AND NOISE ISO-CONTOUR MAPS	24					
APPENDIX B		XВ	SAMPLE CALCULATION FOR NOISE MODELING	28					
APP	ENDI	ХC	COORDINATES OF POINTS OF RECEPTION	31					
APP	ENDI	X D	COORDINATES OF PARTICIPANTS	35					
APP	ENDI	ΧE	TURBINE TECHNICAL SPECIFICATIONS						
ΔPP	ENDI	XF	COORDINATES OF TURRINES	30					

T	IST	\mathbf{OF}	TA	DI	TC
I.	451	V)r	\mathbf{I}	IDI.	Γ

Table 3-1: Summary of Noise Limits for Points of Reception (Class 3)	5
Table 4-1: Turbine Description – GE 1.6 - 100	6
Table 5-1: GE 1.6 100 Wind Turbine Acoustic Emission Summary	7
Table 5-2: Napier Project – REpower MM92 2.05MW Wind Turbine Acoustic Emission Summary	8
Table 5-4: Transformer Octave Band Calculation Details	9
Table 7-1: Wind Turbine Noise Impact Assessment Summary – Adelaide Wind Farm (Including Adjacent Wind Farm)	12
Table 7-2: Wind Turbine Noise Impact Assessment Summary – Adelaide Wind Farm – Participants	21

LIST OF FIGURES

Figure 2-1: Land features of the Adelaide wind farm site

2

1 INTRODUCTION

GL Garrad Hassan Canada, Inc., a member of the GL Group and part of the GL Garrad Hassan brand (hereafter "GL GH") was retained by NextEra Energy Canada, ULC ("Client" or "NextEra") to prepare a Noise Impact Assessment (NIA) of the Adelaide Wind Energy Centre ("Project") in accordance with Ontario Regulation 359/09 (Renewable Energy Approvals (REA) under Part V.0.1 of the Ontario Environmental Protection Act (EPA)) [1] and Regulation 521/10. This NIA also follows the Ontario Ministry of the Environment (MOE) 2008 NPC Noise Interpretation Guidelines [2].

The proposed Adelaide Wind Energy Centre is located in south-western Ontario, in the Township of Adelaide-Metcalfe, Middlesex County, Ontario.

The Project will comprise 38 GE 1.6-100 (1.62 MW) turbines manufactured by General Electric (GE). The substation transformer location has been determined and it has been included in this assessment.

The objective of this assessment is twofold:

- Confirm the sound level limit requirements for the Project by providing an assessment of the existing baseline environmental noise conditions in the vicinity of the wind farm; and
- Predict the noise levels generated by the Project and adjacent projects at all Points of Reception, Participants and Vacant Lot Receptors within 1.5 km of the turbines.

2 GENERAL DESCRIPTION OF PROJECT SITE

2.1 General Characteristics

The proposed Adelaide Wind Energy Centre is located in southwestern Ontario, in the Township of Adelaide-Metcalfe, Middlesex County, Ontario. More specifically, the Project Area is located south of Townsend Line, west of Center Road, north of Napperton Drive and east of Sexton Road.

The Project has been configured using 38 GE 1.6-100 (1.62 MW), though only 37 turbines will be constructed. The wind turbines have been strategically sited on lands that the Client holds under lease option. The total Project Area is approximately 6,515 ha. Project components will be installed on privately-owned agricultural lots within this area. It is anticipated that the Project's collection system may be partially located on public rights-of-way.

Energy generated by the Project will be collected via underground cabling and overhead lines and directed to a substation. A project-owned 115 kV transmission line will then travel north; approximately 11.4 km to a proponent owned switchyard and from there will connect to a Hydro One 500 kV transmission line located approximately 11.5 km west of the project switchyard.

The landscape in the study area is predominantly characterized by agricultural fields and associated farms punctuated with numerous hedgerows, isolated woodlands, and the occasional watercourse. Photographs included in Figure 2-1 show typical views of the land and features of the study area.

Figure 2-1: Land features of the Adelaide wind farm site

2.2 Land Use Description

The site is located within two two-tiered municipal systems. The County of Middlesex makes up the upper tier of the region, while Adelaide Metcalfe, North Middlesex and Strathroy-Caradoc, along with five additional townships and municipalities, have lower tier municipal status. Agriculture is the predominant economic activity and land use throughout the County of Middlesex; however, the

municipalities that comprise the study area each have features creating distinct community character. Surrounding properties and lands are characterized as low density residential while also including a number of agricultural buildings. Other land use within the study area includes rural and urban-rural, providing a foundation for manufacturing, business and tourism development. Access to the Adelaide Project is provided by small paved and unpaved municipal roads that stem from larger municipal roads. A zoning map key of Adelaide is shown in Appendix A.

2.3 **Points of Reception**

Receptor locations (i.e. Points of Reception) for the Project were identified using base data from recent aerial photos obtained from the Client, and field reconnaissance performed by GL GH to verify locations and building types. The height of each Point of Reception - taken to be 1.5 m, 4.5 m and 7.5 m for onestorey, two-storey and three-storey houses respectively - was also noted. All Points of Reception, as per the definition of the MOE, were considered in this NIA.

The MOE Noise Guidelines [2] generally define a Point of Reception (POR) as a house, campground, church, school or other sensitive building that is not located on the same premises as the wind farm, including its turbines and ancillary structures. Points of Reception can also include locations on vacant lots that have residences as a permitted use; in this case, GL GH and a third party consultant, IBI Group, identified Vacant Lot Receptors (VLR) on such lots in a location consistent with the building pattern in the area, as per the O. Reg. 359/09 and the Ontario MOE Noise Guidelines.

A residence located on the same premises as the wind turbine(s) or other Project infrastructure is not a Point of Reception as defined by the MOE noise guidelines, and considered a "Participating Receptor", and thus MOE noise limits do not apply.

A cluster of buildings is treated as one Point of Reception, the assumption being that each cluster represents one residence with adjacent garage, barns and/or outbuildings, and that the sound level will be similar for buildings in close proximity to each other.

The coordinates of each of the Points of Reception, Participants and Vacant Lot Receptors are listed in Appendix C and Appendix D, respectively.

3 DESCRIPTION OF POINTS OF RECEPTION

There is a total of 249 PORs located within a radius of 1500 m of a wind turbine or substation, among which 111 are VLRs and 138 are dwellings or other sensitive receptors such as churches, schools and cemeteries. There are 33 dwellings considered as Participants and 15 Vacant Lot Receptors considered as Participants.

3.1 Receptor Classes

The MOE categorizes Points of Reception into three classes: 1, 2, and 3. Class 1 refers to an acoustic environment typical of a major population centre where the background noise is dominated by the urban hum. These areas are highly urbanized and have moderate to high noise levels throughout the day and night. Class 2 areas have an acoustic environment characterized by low ambient sound levels between 19:00 and 07:00, whereby the evening and night time levels are defined by natural sounds, infrequent human activity and no clearly audible sounds from stationary sources (e.g. industrial and commercial facilities). Class 3 areas are typical of rural and/or small communities (i.e. with populations of less than 1000) and an acoustic environment that is dominated by natural sounds with little or no road traffic.

Within the study area the main sources of ambient sound that currently exist include:

- Vehicular traffic noise from Highway 402;
- Vehicular traffic on the local concession and side roads, some of which are gravel roads;
- Occasional sounds due to agricultural activities;
- Occasional sounds due to anthropogenic domestic activities; and
- Natural sounds.

Based on these conditions, all Points of Reception are considered as having a Class 3 acoustic environment.

3.2 Determination of Applicable Noise Limits

As stated in the MOE guidelines, the noise limits for a wind farm are set according to the existing MOE noise guidelines in NPC-205/NPC-232 while taking into account the wind-generated background noise.

For a Class 3 area, the sound level limits as defined by the MOE Interpretation are described in the sections below.

3.2.1 Wind Turbine Installations in Class 3 Areas (Rural), Wind Speeds Below 6 m/s

The lowest sound level limit expressed in terms of L_{eq} is: i) 40 dB(A); or ii) the minimum hourly background sound level established in accordance with Publications NPC-232/NPC-233, whichever is higher.

3.2.2 Class 3 Areas, Wind Speeds above 6 m/s

The lowest sound level limit expressed in terms of L_{eq} is: i) the wind-induced background sound level, expressed in terms of ninetieth percentile sound level (L_{A90}) plus 7 dB; or ii) the minimum hourly background sound level established in accordance with Publications NPC-205/NPC-232/NPC-233, whichever is higher.

The applicable noise limits should be those defined by the MOE as summarized below in Table 3-1. A sample calculation of how noise modeling was determined for each Point of Reception appears in Appendix B where intermediate and cumulative A-weighted sound pressure levels from each turbine are provided.

Table 3-1: Summary of Noise Limits for Points of Reception (Class 3)

		Wind	Speed	d [m/s	s]
Wind Turbine Noise Criterion NPC-232 [dB(A)]	6	7	8	9	10
	40	43	45	49	51

4 DESCRIPTION OF SOURCES

4.1 Turbine Description

The proposed GE 1.6-100 turbine is a 3-bladed, upwind, horizontal-axis turbine. The total rotor diameter of the turbine is 100 m, resulting in a swept area of 7,854 m², and is designed to operate at between 9.75 and 16.18 revolutions per minute (rpm). The turbine rotor and nacelle are mounted on top of an 80 m tubular tower which is manufactured in sections from steel plate. Each turbine is mounted on a steel reinforced concrete foundation and equipped with a transformer, located outside the base of the tower.

Table 4-1 presents the general specifications of the wind turbine.

Table 4-1: Turbine Description – GE 1.6 - 100

Model	GE 1.6 - 100
Design	Steel, tubular, white; 3 sections
Rated power	1.62 MW
Hub height	80 m
Rotor diameter	100 m
Rotor swept area	7854 m ²
Operational interval	9.75 – 16.18 rpm
Number of blades	3
Cut-in wind speed	3 m/s
Cut-out wind speed	25 m/s
Nominal wind speed	12 m/s

Full noise specifications as provided by the manufacturer can be found in Appendix E. Coordinates of all turbines are listed in Appendix F.

The Project consists of 38 wind turbines, though only 37 will be constructed. The collector system will connect to the substation, where the voltage will be elevated to 115 kV. The main power transformer has been included in this NIA.

5 WIND TURBINE NOISE EMISSION RATING

5.1 Noise Emission Rating of the Adelaide Wind Farm Turbines

Broadband sound power levels and octave band sound power levels of the GE 1.6-100 wind turbine were provided by the manufacturer and are shown in Appendix E. Measurements were made in accordance with the IEC 61400 – 11 Ed. 2.1[3] method using standardized wind speeds at 10-m height. The values corresponding to the maximum sound power level of the turbine were retained for the purpose of the noise impact assessment to account for summer night-time shear. These values correspond to a 10-m height wind speed of 10 m/s or more. The proposed version of the GE 1.6-100 wind turbine uses Low Noise Trailing Edge (LNTE) serrated blade technology, which results in a lower broadband sound level than the previous version.

The GE 1.6-100 wind turbine has an expected value for tonal audibility of Δ La,k < 2 dB, irrespective of wind speed, hub height, and grid frequency based on the IEC 61400-11 standard [4].

The octave band sound power levels used for the simulation in this NIA are those stated for each octave band centre frequency in Table 5-1.

Table 5-1: GE 1.6 100 Wind Turbine Acoustic Emission Summary

Make and Mod	Make and Model : GE 1.6 100										
Electrical Rating: 1.6 MW											
Hub Height (m): 80 m											
Wind Shear Coefficient: 0.35, typical summer night time shear of the region											
		Octave Band Sound Power Level [dBA]									
	Mai	nufactur	er's Emi	ssion Le	vels		Adjusted	Emissio	n Levels	S	
Wind Speed [m/s]	6	7	8	9	10	6	7	8	9	10	
Frequency [Hz]											
31.5	76.0	79.6	80.1	80.2	80.1	80.1	80.1	80.1	80.1	80.1	
63	85.5	89.2	89.6	89.7	89.6	89.6	89.6	89.6	89.6	89.6	
125	90.8	93.9	94.4	94.4	94.3	94.3	94.3	94.3	94.3	94.3	
250	94.4	95.0	95.1	95.2	95.2	95.2	95.2	95.2	95.2	95.2	
500	95.0	96.3	96.1	96.1	96.5	96.5	96.5	96.5	96.5	96.5	
1000	91.3	96.4	96.9	97.0	97.2	97.2	97.2	97.2	97.2	97.2	
2000	91.9	95.0	95.2	94.9	94.3	94.3	94.3	94.3	94.3	94.3	
4000	88.4	89.0	88.6	87.9	87.2	87.2	87.2	87.2	87.2	87.2	
8000	69.8	69.7	70.0	68.8	68.7	68.7	68.7	68.7	68.7	68.7	
A-weighted	100.5	102.8	103.0	103.0	103.0	103.0	103.0	103.0	103.0	103.0	

5.2 **Noise Emission Rating of the Adjacent Napier Wind Farm Turbines**

The Napier wind farm, which is under development, is within 5 km of the proposed Adelaide wind farm.

The broadband sound power level of the REPower MM92 2.05MW wind turbine had previously been provided to GL GH by the previous owner of the Adelaide project, TCI Renewables, and is shown in Appendix E. Octave band sound power levels were taken from a noise measurement report for the MM92 performed by GL WINDTEST. This information was not sent by the Client or the owner of the Napier Wind Farm, but is considered an accurate representation of the sound power levels of this turbine. The values corresponding to the maximum sound power level of the turbine were retained for the purpose of the noise impact assessment. The hub height was set to 100 m.

The octave band sound power levels used for the simulation in this NIA are those stated for each octave band centre frequency in Table 5-2.

Table 5-2: Napier Project – REpower MM92 2.05MW Wind Turbine Acoustic Emission Summary

MM92 2.05		Octave Band Sound Power Level [dBA]								
Frequency [Hz]	63	125	250	500	1000	2000	4000	8000	Broadband	
PWL [dBA]	83.8	91.2	96.2	99.2	99.3	94.8	87.8	71.1	104.2	

5.3 **Noise Emission Rating of the Substation Transformer**

The cumulative effect that the substation would have on nearby residents has been considered in this analysis.

Noise emission from the substation mainly originates from one (1) high-voltage 51/68/85 MVA, 121/34.5 kV, Wye/ Delta step-up transformer. The equipment proposed for the substation will be compliant with applicable standards (CAN/CSA-C88-M90, IEEE C57.12.90).

The broadband sound power level for the noise modeling calculations was conservatively assumed to be 105.0 dB(A) based on standard CAN/CSA-C88-M90 and for utility scale transformers, This sound level includes a 5 dB(A) tonal penalty as prescribed in Publication NPC-104,

A sound barrier has been proposed to attenuate the noise from the substation transformer. The type of barrier used in this noise study is one that can be described as of absorptive type with an Absorptive Coefficient of 0.85. The acoustic barrier should have a density of at least 20 kg/m² and have a closed surface free of gaps and cracks, such as Armtec's Durisol. A 6 meter tall one-sided barrier was placed south of the transformer and is illustrated on the noise iso-contour maps in Appendix A.

The substation coordinates, as provided by the client, are included in Appendix F. The Coordinates of the sound barrier are also presented in Appendix F.

Table 5-3 provides the octave band sound power levels of the substation transformer, using a typical transformer octave band sound distribution for a large transformer [5]. It was modeled at a height of 3.0 m agl. Table 5-4 details the octave band calculation.

Table 5-3: Adelaide Project – Substation Transformer Sound Power Level

Transformer		Octave Band Sound Power Level* (dBA)								
Frequency (Hz)	31.5	63	125	250	500	1000	2000	4000	8000	Broadband
PWL (dBA)	62.2	81.4	93.5	96.0	101.4	98.6	94.8	89.6	80.5	105.0

*Includes 5 dBA penalty to account for tonality

Table 5-4: Transformer Octave Band Calculation Details

	8000	4000	2000	1000	500	250	125	63	31.5
Typical Outdoor Transformer Octave band relative distribution [5] [dB Lin]	-21	-14	-9	-4	2	2	7	5	-1
dB Lin to dBA Conversion Scale	-1.1	1.0	1.2	0.0	-3.2	-8.6	-16.1	-26.2	-39.4
Typical Outdoor Transformer Octave band relative distribution [dBA]	-22.1	-13	-7.8	-4	-1.2	-6.6	-9.1	-21.2	-40.4
Scaled to 105.0 dBA Transformer	80.5	89.6	94.8	98.6	101.4	96.0	93.5	81.4	62.2

6 NOISE IMPACT ASSESSMENT

The sound pressure levels at each Point of Reception, Participant and VLR for the aggregate of all wind turbines associated with the Adelaide Project and adjacent projects were calculated based on the ISO 9613-2 method.

The ISO 9613 standard [6], [7] provides a prediction of the equivalent continuous A-weighted sound pressure level at a distance from one or more point sources under meteorological conditions favourable to propagation from sources of sound emission. These conditions are for downwind propagation or, equivalently, propagation under a well-developed moderate ground-based temperature inversion, commonly occurring at night.

The method consists of octave-band algorithms (i.e., with nominal mid-band frequencies from 63 Hz to 8 kHz) for calculating the attenuation of the emitted sound. The algorithm takes into account the following physical effects:

- Geometrical divergence attenuation due to spherical spreading from the sound source;
- Atmospheric absorption attenuation due to absorption by the atmosphere; and
- Ground effect attenuation due to the acoustical properties of the ground.

ISO-9613-2 parameters were set as follows:

- Ambient air temperature: 10°C;
- Ambient barometric pressure: 101.32 kPa;
- Humidity: 70%;
- Source ground factor: 0.7;
- Middle ground factor: 0.7; and
- Receptor ground factor: 0.7.
- The effect of topography was considered

Additional potential attenuation from foliage was not taken into account in this NIA, implying that the values calculated for sound attenuation are likely to be conservative in areas where there is foliage present in the line of sight between any turbine and a Point of Reception. The estimated accuracy of the ISO 9613 method, as stated in ISO 9613-2, is \pm 3 dB.

The wind turbine noise emission ratings used for each octave band were those specified in Table 5-1 and Table 5-2. The noise impact was calculated for each Point of Reception and Participant located within 1,500 m of one or more turbines or substation, and the calculated noise level was then compared with the applicable noise limit for each Point of Reception as stated in Table 3-1.

Noise levels were calculated at 4.5 m and 7.5 m agl for 2-storey and 3-storey Points of Reception/Participants respectively, and at 1.5 m agl at 16 points along a 30 m radius circle for each 1-storey Point of Reception/Participant. For the latter, the highest of these 16 values was chosen and presented in the table of noise levels.

7 NOISE IMPACT ASSESSMENT SUMMARY TABLE

7.1 Results

The noise level at each critical Point of Reception within 1,500 m of any turbine or substation of the Adelaide Project, for wind speeds between 6 m/s and 10 m/s, is tabulated in Table 7-1. For each Point of Reception, the following information is provided:

- The distance to the closest wind turbine;
- For Points of Reception at 1.5 m agl, the sound pressure level presented for wind speeds from 6 m/s to 10 m/s is the maximum noise level on the circumference of a 30 m radius circle centered on the Point of Reception;
- For Points of Reception at 4.5 m or 7.5 m agl, the sound pressure level presented for wind speeds from 6 m/s to 10 m/s is the noise level at the Point of Reception location at its respective height;
- The sound level limit for that Point of Reception according to the MOE noise guidelines at each wind speed from 6 m/s to 10 m/s;
- The applicable background sound level; and
- Whether or not the noise levels at the Point of Reception comply with the MOE guidelines (for continued reference, compliance is confirmed for all Points of Reception).

The closest distance between a wind turbine and a Point of Reception for this project is 631 m, found between turbine 4 and R_332 and 615 m found between turbine 2 and VLR_331.

The closest distance between a Point of Reception and the substation transformer is 289 m, found between Point of Reception R_408 and the transformer.

The highest calculated noised levels were found at R_119 and VLR_73 with a sound pressure level of 39.6 dB(A) and 39.3 dB(A) respectively.

The results show that the Adelaide Project complies with the applicable MOE noise guidelines at all wind speeds modelled (i.e., 6, 7, 8, 9 and 10 m/s). Noise iso-contour maps illustrating the maximum cumulative noise contribution of all noise sources are shown in 9.

Similarly, the maximum noise level calculated at each Participant within 1,500 m of any turbine or substation of the Adelaide Project is tabulated in Table 7-2.

Table 7-1: Wind Turbine Noise Impact Assessment Summary – Adelaide Wind Farm (Including Adjacent Wind Farm)

Point of	Receptor	Distance to Nearest	Nearest	Calculated Sound Pressure Level at Receptor [dB(A)] at Selected Wind Speed in m/s Sound Level Limit [dB(A)] at Selected Wind Background Sound Level Applicable Background Sound Level							Collated Sound Pressure Level at Receptor Sound Level Limit [dB(A)] at Selected Wind Background Sound Background Sound						
Reception ID	Height [m]	Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Compliance With Limit (Yes/No)		
R_17	4.5	1497	36	36.6	36.6	36.6	36.6	36.6	40	43	45	49	51	40	Yes		
R_21	4.5	1491	36	36.3	36.3	36.3	36.3	36.3	40	43	45	49	51	40	Yes		
V_23	4.5	1476	36	37.0	37.0	37.0	37.0	37.0	40	43	45	49	51	40	Yes		
R_36	4.5	1452	35	38.2	38.2	38.2	38.2	38.2	40	43	45	49	51	40	Yes		
R_38	1.5	1397	36	37.3	37.3	37.3	37.3	37.3	40	43	45	49	51	40	Yes		
R_42	4.5	1434	33	38.3	38.3	38.3	38.3	38.3	40	43	45	49	51	40	Yes		
R_45	7.5	1497	37	34.0	34.0	34.0	34.0	34.0	40	43	45	49	51	40	Yes		
R_50	7.5	1399	37	35.8	35.8	35.8	35.8	35.8	40	43	45	49	51	40	Yes		
V_51	4.5	1329	36	39.1	39.1	39.1	39.1	39.1	40	43	45	49	51	40	Yes		
V_52	4.5	1329	36	38.4	38.4	38.4	38.4	38.4	40	43	45	49	51	40	Yes		
V_55	4.5	1388	35	38.2	38.2	38.2	38.2	38.2	40	43	45	49	51	40	Yes		
R_56	4.5	1342	36	37.4	37.4	37.4	37.4	37.4	40	43	45	49	51	40	Yes		
V_57	4.5	1321	33	38.4	38.4	38.4	38.4	38.4	40	43	45	49	51	40	Yes		
V_58	4.5	1310	33	38.0	38.0	38.0	38.0	38.0	40	43	45	49	51	40	Yes		
V_59	4.5	1356	33	38.8	38.8	38.8	38.8	38.8	40	43	45	49	51	40	Yes		
R_60	4.5	1333	33	37.8	37.8	37.8	37.8	37.8	40	43	45	49	51	40	Yes		
R_62	4.5	1497	33	37.8	37.8	37.8	37.8	37.8	40	43	45	49	51	40	Yes		
R_64	4.5	1288	33	38.0	38.0	38.0	38.0	38.0	40	43	45	49	51	40	Yes		
V_65	4.5	1458	30	32.4	32.4	32.4	32.4	32.4	40	43	45	49	51	40	Yes		
R_69	4.5	1492	30	33.2	33.2	33.2	33.2	33.2	40	43	45	49	51	40	Yes		
R_72	4.5	1500	30	33.8	33.8	33.8	33.8	33.8	40	43	45	49	51	40	Yes		
V_73	4.5	1363	35	39.3	39.3	39.3	39.3	39.3	40	43	45	49	51	40	Yes		
R_74	4.5	1392	37	33.0	33.0	33.0	33.0	33.0	40	43	45	49	51	40	Yes		
V_75	4.5	996	37	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes		
R_76	1.5	1089	32	35.9	35.9	35.9	35.9	35.9	40	43	45	49	51	40	Yes		
V_77	4.5	889	37	35.7	35.7	35.7	35.7	35.7	40	43	45	49	51	40	Yes		
V_78	4.5	1366	38	30.7	30.7	30.7	30.7	30.7	40	43	45	49	51	40	Yes		
V_79	4.5	1366	38	30.7	30.7	30.7	30.7	30.7	40	43	45	49	51	40	Yes		
R_80	1.5	959	32	36.1	36.1	36.1	36.1	36.1	40	43	45	49	51	40	Yes		

GL Garrad Hassan Canada, Inc.

GL**®**

12

10

38.0

33.7

34.7

36.0

38.4

35.8

34.8

35.4

36.9

35.6

33.4

35.5

33.6

38.4

32.4

31.8

34.8

38.2

38.4

37.5

37.1

34.9

36.1

34.2

38.2

39.6

37.8

36.5

36.8

37.2

Sound Level Limit [dB(A)] at Selected Wind

Speed in m/s

8

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

45

9

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

49

10

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

51

40

40

40

40

40

40

40

40

40

40

40

40

7

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

43

6 or <

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

Calculated Sound Pressure Level at Receptor

[dB(A)] at Selected Wind Speed in m/s

8

38.0

33.7

34.7

36.0

38.4

35.8

34.8

35.4

36.9

35.6

33.4

35.5

33.6

38.4

32.4

31.8

34.8

38.2

38.4

37.5

37.1

34.9

36.1

34.2

38.2

39.6

37.8

36.5

36.8

37.2

33.3

9

38.0

33.7

34.7

36.0

38.4

35.8

34.8

35.4

36.9

35.6

33.4

35.5

33.6

38.4

32.4

31.8

34.8

38.2

38.4

37.5

37.1

34.9

36.1

34.2

38.2

39.6

37.8

36.5

36.8

37.2

33.3

7

38.0

33.7

34.7

36.0

38.4

35.8

34.8

35.4

36.9

35.6

33.4

35.5

33.6

38.4

32.4

31.8

34.8

38.2

38.4

37.5

37.1

34.9

36.1

34.2

38.2

39.6

37.8

36.5

36.8

37.2

33.3

6 or <

38.0

33.7

34.7

36.0

38.4

35.8

34.8

35.4

36.9

35.6

33.4

35.5

33.6

38.4

32.4

31.8

34.8

38.2

38.4

37.5

37.1

34.9

36.1

34.2

38.2

39.6

37.8

36.5

36.8

37.2

33.3

Receptor

Height

[m]

4.5

1.5

4.5

4.5

4.5

4.5

1.5

4.5

4.5

4.5

1.5

4.5

1.5

4.5

4.5

1.5

1.5

4.5

4.5

4.5

4.5

4.5

4.5

4.5

4.5

1.5

4.5

1.5

1.5

Point of

Reception ID

R_81

R 82

R_83

 $V_{-}84$

R_86

 $V_{-}87$

R_96

V_97

V_98

V_99

R_100

 $V_{-}101$

R_102

 $V_{-}103$

V 104

R_106

R 107

R_108

R_109

V_110

R_111

V 112

V_113

R 114

V_118

R_119

R_126

R 127

R_128

Distance to

Nearest

Turbine

[m]

894

1000

756

871

834

1011

1174

1116

861

980

1028

1233

1028

1191

1207

1396

995

987

1180

652

698

1215

1130

1014

1109

695

857

1120

1127

Nearest

Turbine

[ID]

32

37

38

37

32

37

13

29

26

38

29

25

29

21

29

13

26

31

21

38

38

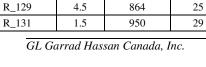
13

13

29

34

32


25

24

21

Issue: D	Final					
Applicable Background Sound Level	Compliance With					
NPC 232 (C 3)	Limit (Yes/No)					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					
40	Yes					

Yes

40

Point of	Receptor	Distance to Nearest Turbine	Nearest				Level at R d Speed in		Sound		nit [dB(A)] Speed in m	at Selected /s	l Wind	Applicable Background Sound Level	Compliance With
Reception ID	Height [m]	Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
R_135	4.5	986	24	38.1	38.1	38.1	38.1	38.1	40	43	45	49	51	40	Yes
R_137	1.5	796	38	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
R_138	1.5	1064	24	36.4	36.4	36.4	36.4	36.4	40	43	45	49	51	40	Yes
R_139	4.5	1048	25	35.9	35.9	35.9	35.9	35.9	40	43	45	49	51	40	Yes
R_140	4.5	1022	24	38.1	38.1	38.1	38.1	38.1	40	43	45	49	51	40	Yes
R_143	1.5	1038	21	37.2	37.2	37.2	37.2	37.2	40	43	45	49	51	40	Yes
R_145	4.5	973	29	36.7	36.7	36.7	36.7	36.7	40	43	45	49	51	40	Yes
R_146	7.5	1084	23	38.6	38.6	38.6	38.6	38.6	40	43	45	49	51	40	Yes
V_149	4.5	1046	21	38.7	38.7	38.7	38.7	38.7	40	43	45	49	51	40	Yes
R_150	1.5	834	24	36.6	36.6	36.6	36.6	36.6	40	43	45	49	51	40	Yes
R_152	4.5	980	13	36.8	36.8	36.8	36.8	36.8	40	43	45	49	51	40	Yes
R_153	1.5	1201	13	32.8	32.8	32.8	32.8	32.8	40	43	45	49	51	40	Yes
R_154	1.5	839	20	38.2	38.2	38.2	38.2	38.2	40	43	45	49	51	40	Yes
V_158	4.5	762	38	37.4	37.4	37.4	37.4	37.4	40	43	45	49	51	40	Yes
V_159	4.5	915	38	36.1	36.1	36.1	36.1	36.1	40	43	45	49	51	40	Yes
V_160	4.5	1099	38	35.6	35.6	35.6	35.6	35.6	40	43	45	49	51	40	Yes
V_162	4.5	924	23	38.7	38.7	38.7	38.7	38.7	40	43	45	49	51	40	Yes
R_163	4.5	1248	13	33.8	33.8	33.8	33.8	33.8	40	43	45	49	51	40	Yes
R_164	7.5	1048	13	36.0	36.0	36.0	36.0	36.0	40	43	45	49	51	40	Yes
V_165	4.5	1414	13	32.6	32.6	32.6	32.6	32.6	40	43	45	49	51	40	Yes
R_168	4.5	1061	29	33.2	33.2	33.2	33.2	33.2	40	43	45	49	51	40	Yes
V_170	4.5	723	29	36.1	36.1	36.1	36.1	36.1	40	43	45	49	51	40	Yes
V_172	4.5	756	25	36.8	36.8	36.8	36.8	36.8	40	43	45	49	51	40	Yes
V_174	4.5	624	29	37.5	37.5	37.5	37.5	37.5	40	43	45	49	51	40	Yes
V_176	4.5	663	27	38.1	38.1	38.1	38.1	38.1	40	43	45	49	51	40	Yes
V_177	4.5	763	27	37.3	37.3	37.3	37.3	37.3	40	43	45	49	51	40	Yes
R_179	4.5	1296	21	36.0	36.0	36.0	36.0	36.0	40	43	45	49	51	40	Yes
R_180	1.5	1338	21	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
R_181	4.5	1468	9	35.6	35.6	35.6	35.6	35.6	40	43	45	45 49 51		40	Yes
R_183	4.5	1463	16	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes
V_186	4.5	1453	12	32.1	32.1	32.1	32.1	32.1	40	43	45	49	51	40	Yes

GL Garrad Hassan Canada, Inc.

Point of	Receptor	Distance to Nearest	Nearest				Level at R d Speed in	•	Sound		nit [dB(A)] Speed in m	at Selected	l Wind	Applicable Background Sound Level	Compliance With
Reception ID	Height [m]	Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
V_187	4.5	1225	12	33.5	33.5	33.5	33.5	33.5	40	43	45	49	51	40	Yes
R_188	1.5	1411	5	33.3	33.3	33.3	33.3	33.3	40	43	45	49	51	40	Yes
V_189	4.5	930	12	35.8	35.8	35.8	35.8	35.8	40	43	45	49	51	40	Yes
V_191	4.5	1038	12	34.8	34.8	34.8	34.8	34.8	40	43	45	49	51	40	Yes
V_193	4.5	874	12	36.8	36.8	36.8	36.8	36.8	40	43	45	49	51	40	Yes
V_195	4.5	1097	12	36.8	36.8	36.8	36.8	36.8	40	43	45	49	51	40	Yes
V_196	4.5	1299	9	36.1	36.1	36.1	36.1	36.1	40	43	45	49	51	40	Yes
V_197	4.5	1238	9	36.4	36.4	36.4	36.4	36.4	40	43	45	49	51	40	Yes
R_198	4.5	1428	5	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
R_199	4.5	871	12	36.4	36.4	36.4	36.4	36.4	40	43	45	49	51	40	Yes
V_201	4.5	1416	5	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
R_202	4.5	1402	8	35.7	35.7	35.7	35.7	35.7	40	43	45	49	51	40	Yes
R_203	4.5	1394	8	35.7	35.7	35.7	35.7	35.7	40	43	45	49	51	40	Yes
V_207	4.5	1402	3	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
V_208	4.5	1433	4	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes
R_209	1.5	1195	9	35.0	35.0	35.0	35.0	35.0	40	43	45	49	51	40	Yes
R_210	1.5	1369	5	33.1	33.1	33.1	33.1	33.1	40	43	45	49	51	40	Yes
R_211	4.5	1185	9	36.7	36.7	36.7	36.7	36.7	40	43	45	49	51	40	Yes
R_213	4.5	1447	4	34.5	34.5	34.5	34.5	34.5	40	43	45	49	51	40	Yes
R_217	1.5	1376	2	33.4	33.4	33.4	33.4	33.4	40	43	45	49	51	40	Yes
R_218	4.5	908	12	37.2	37.2	37.2	37.2	37.2	40	43	45	49	51	40	Yes
R_222	1.5	1392	4	33.3	33.3	33.3	33.3	33.3	40	43	45	49	51	40	Yes
R_227	4.5	1335	3	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
R_228	1.5	1346	3	33.6	33.6	33.6	33.6	33.6	40	43	45	49	51	40	Yes
R_229	1.5	1334	3	33.6	33.6	33.6	33.6	33.6	40	43	45	49	51	40	Yes
V_230	4.5	1327	3	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
V_231	4.5	1326	3	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
R_232	4.5	1332	2	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
R_233	1.5	1329	3	33.6	33.6	33.6	33.6	33.6	40	43	45	49	51	40	Yes
V_234	4.5	1356	3	35.0	35.0	35.0	35.0	35.0	40	43	45	49	51	40	Yes
R_235	1.5	1362	2	33.3	33.3	33.3	33.3	33.3	40	43	45	49	51	40	Yes

GL Garrad Hassan Canada, Inc.

GL**⊚**

Final

Point of	Receptor	Nearest Turbine	Nearest				Level at R d Speed in		Sound		nit [dB(A)] Speed in m	at Selected /s	l Wind	Applicable Background Sound Level	Compliance With
Reception ID	Height [m]		Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
R_236	4.5	1333	2	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
R_238	4.5	1324	3	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
R_239	4.5	1311	3	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
R_248	1.5	1010	12	33.3	33.3	33.3	33.3	33.3	40	43	45	49	51	40	Yes
R_249	4.5	1087	12	34.2	34.2	34.2	34.2	34.2	40	43	45	49	51	40	Yes
R_250	4.5	1148	12	33.8	33.8	33.8	33.8	33.8	40	43	45	49	51	40	Yes
V_251	4.5	1268	3	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
R_253	4.5	1276	3	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
R_255	1.5	1261	3	33.8	33.8	33.8	33.8	33.8	40	43	45	49	51	40	Yes
R_256	1.5	1271	3	33.7	33.7	33.7	33.7	33.7	40	43	45	49	51	40	Yes
R_257	4.5	1269	2	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
R_258	1.5	1257	3	33.8	33.8	33.8	33.8	33.8	40	43	45	49	51	40	Yes
R_259	4.5	1248	3	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
R_260	1.5	1133	9	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
R_261	1.5	1270	3	33.7	33.7	33.7	33.7	33.7	40	43	45	49	51	40	Yes
V_262	4.5	1262	3	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
R_264	1.5	1251	2	33.7	33.7	33.7	33.7	33.7	40	43	45	49	51	40	Yes
R_265	1.5	1242	3	33.8	33.8	33.8	33.8	33.8	40	43	45	49	51	40	Yes
R_267	4.5	953	12	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
R_270	4.5	1241	5	35.6	35.6	35.6	35.6	35.6	40	43	45	49	51	40	Yes
V_272	4.5	1348	12	32.6	32.6	32.6	32.6	32.6	40	43	45	49	51	40	Yes
V_275	4.5	1218	3	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes
V_276	4.5	702	12	37.6	37.6	37.6	37.6	37.6	40	43	45	49	51	40	Yes
V_280	4.5	1219	3	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes
V_281	4.5	1251	4	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
V_282	4.5	1251	4	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
V_284	4.5	1231	8	36.1	36.1	36.1	36.1	36.1	40	43	45	49	51	40	Yes
V_285	4.5	1198	3	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes
V_287	4.5	1249	5	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes
R_289	1.5	1223	3	33.9	33.9	33.9	33.9	33.9	40	43	45	49	51	40	Yes
R_290	4.5	1206	3	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes

GL Garrad Hassan Canada, Inc.

GL**⊚**

Point of Receptor Height N	Distance to Nearest	Nearest			d Pressure lected Win			Sound		nit [dB(A)] Speed in m	at Selected /s	l Wind	Applicable Background Sound Level	Compliance With	
	Height [m]	Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
V_291	4.5	1377	5	34.5	34.5	34.5	34.5	34.5	40	43	45	49	51	40	Yes
V_292	4.5	1434	4	34.6	34.6	34.6	34.6	34.6	40	43	45	49	51	40	Yes
R_295	4.5	1478	2	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes
V_296	4.5	1184	3	35.6	35.6	35.6	35.6	35.6	40	43	45	49	51	40	Yes
R_304	4.5	1187	3	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes
R_309	1.5	1141	3	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes
R_310	4.5	1156	3	35.7	35.7	35.7	35.7	35.7	40	43	45	49	51	40	Yes
R_311	4.5	1112	3	35.9	35.9	35.9	35.9	35.9	40	43	45	49	51	40	Yes
V_312	4.5	1092	3	35.9	35.9	35.9	35.9	35.9	40	43	45	49	51	40	Yes
V_313	4.5	1096	3	35.9	35.9	35.9	35.9	35.9	40	43	45	49	51	40	Yes
R_314	4.5	1096	3	35.9	35.9	35.9	35.9	35.9	40	43	45	49	51	40	Yes
R_315	1.5	1124	3	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes
R_317	1.5	1106	3	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
R_319	4.5	1064	8	37.0	37.0	37.0	37.0	37.0	40	43	45	49	51	40	Yes
R_320	4.5	1065	3	36.1	36.1	36.1	36.1	36.1	40	43	45	49	51	40	Yes
R_322	4.5	1068	3	36.1	36.1	36.1	36.1	36.1	40	43	45	49	51	40	Yes
R_323	4.5	1186	2	35.0	35.0	35.0	35.0	35.0	40	43	45	49	51	40	Yes
R_324	1.5	1046	3	34.8	34.8	34.8	34.8	34.8	40	43	45	49	51	40	Yes
R_325	1.5	1057	3	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes
R_326	1.5	999	3	35.0	35.0	35.0	35.0	35.0	40	43	45	49	51	40	Yes
V_327	4.5	1064	4	35.6	35.6	35.6	35.6	35.6	40	43	45	49	51	40	Yes
V_328	4.5	897	3	37.1	37.1	37.1	37.1	37.1	40	43	45	49	51	40	Yes
V_329	4.5	670	4	38.0	38.0	38.0	38.0	38.0	40	43	45	49	51	40	Yes
R_330	1.5	678	2	36.2	36.2	36.2	36.2	36.2	40	43	45	49	51	40	Yes
V_331	4.5	555	2	38.9	38.9	38.9	38.9	38.9	40	43	45	49	51	40	Yes
R_332	1.5	631	4	37.0	37.0	37.0	37.0	37.0	40	43	45	49	51	40	Yes
R_337	1.5	800	4	35.6	35.6	35.6	35.6	35.6	40	43	45	49	51	40	Yes
R_338	4.5	883	11	37.3	37.3	37.3	37.3	37.3	40	43	45	49	51	40	Yes
R_340	1.5	945	4	34.6	34.6	34.6	34.6	34.6	40	43	45	49	51	40	Yes
V_341	4.5	1116	4	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
R_342	1.5	814	1	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes

GL Garrad Hassan Canada, Inc.

GL®

Final

Doint of	Point of Receptor Height Tur	Distance to Nearest	Nearest			d Pressure lected Win			Sound		nit [dB(A)] Speed in m	at Selected /s	l Wind	Applicable Background Sound Level	Compliance With
	Height [m]	Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
R_345	4.5	762	6	37.1	37.1	37.1	37.1	37.1	40	43	45	49	51	40	Yes
R_347	4.5	699	6	37.5	37.5	37.5	37.5	37.5	40	43	45	49	51	40	Yes
R_348	4.5	981	6	35.7	35.7	35.7	35.7	35.7	40	43	45	49	51	40	Yes
V_349	4.5	1008	6	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
V_350	4.5	1329	5	33.9	33.9	33.9	33.9	33.9	40	43	45	49	51	40	Yes
V_351	4.5	1362	5	33.5	33.5	33.5	33.5	33.5	40	43	45	49	51	40	Yes
V_355	4.5	1246	1	33.0	33.0	33.0	33.0	33.0	40	43	45	49	51	40	Yes
V_356	4.5	887	1	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
V_357	4.5	1457	sub	30.7	30.7	30.7	30.7	30.7	40	43	45	49	51	40	Yes
R_358	4.5	938	6	35.7	35.7	35.7	35.7	35.7	40	43	45	49	51	40	Yes
V_359	4.5	1193	sub	29.5	29.5	29.5	29.5	29.5	40	43	45	49	51	40	Yes
V_360	4.5	1321	sub	32.0	32.0	32.0	32.0	32.0	40	43	45	49	51	40	Yes
V_361	4.5	1133	sub	29.3	29.3	29.3	29.3	29.3	40	43	45	49	51	40	Yes
R_362	7.5	1460	1	32.7	32.7	32.7	32.7	32.7	40	43	45	49	51	40	Yes
R_363	7.5	1302	6	34.8	34.8	34.8	34.8	34.8	40	43	45	49	51	40	Yes
R_364	4.5	993	1	34.6	34.6	34.6	34.6	34.6	40	43	45	49	51	40	Yes
R_365	1.5	1351	1	31.9	31.9	31.9	31.9	31.9	40	43	45	49	51	40	Yes
R_368	1.5	1209	sub	27.5	27.5	27.5	27.5	27.5	40	43	45	49	51	40	Yes
R_371	4.5	1114	6	34.6	34.6	34.6	34.6	34.6	40	43	45	49	51	40	Yes
R_372	4.5	972	6	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
R_373	7.5	1447	6	34.1	34.1	34.1	34.1	34.1	40	43	45	49	51	40	Yes
R_374	4.5	1456	1	32.9	32.9	32.9	32.9	32.9	40	43	45	49	51	40	Yes
R_375	1.5	866	6	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
R_377	4.5	1034	sub	29.5	29.5	29.5	29.5	29.5	40	43	45	49	51	40	Yes
R_378	1.5	1142	sub	30.7	30.7	30.7	30.7	30.7	40	43	45	49	51	40	Yes
R_379	4.5	1330	1	32.5	32.5	32.5	32.5	32.5	40	43	45	49	51	40	Yes
V_382	4.5	1346	6	33.1	33.1	33.1	33.1	33.1	40	43	45	49	51	40	Yes
R_384	4.5	1187	sub	32.3	32.3	32.3	32.3	32.3	40	43	45	49	51	40	Yes
V_385	4.5	1168	6	33.9	33.9	33.9	33.9	33.9	40	43	45	49	51	40	Yes
R_386	1.5	1393	sub	28.5	28.5	28.5	28.5	28.5	40	43	45	49	51	40	Yes
V_387	4.5	927	6	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes

GL Garrad Hassan Canada, Inc.

Final

Point of	Point of Receptor Height N	Distance to Nearest	Nearest			l Pressure ected Win			Sound		nit [dB(A)] Speed in m	at Selected /s	l Wind	Applicable Background Sound Level	Compliance With
	Height [m]	Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
V_388	4.5	935	6	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
V_389	4.5	1245	6	34.0	34.0	34.0	34.0	34.0	40	43	45	49	51	40	Yes
V_390	4.5	1011	6	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
R_399	4.5	1176	sub	31.7	31.7	31.7	31.7	31.7	40	43	45	49	51	40	Yes
V_400	4.5	1302	1	32.4	32.4	32.4	32.4	32.4	40	43	45	49	51	40	Yes
R_402	4.5	1114	6	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
V_403	4.5	1372	sub	30.4	30.4	30.4	30.4	30.4	40	43	45	49	51	40	Yes
R_408	4.5	289	sub	39.0	39.0	39.0	39.0	39.0	40	43	45	49	51	40	Yes
R_414	4.5	521	sub	38.9	38.9	38.9	38.9	38.9	40	43	45	49	51	40	Yes
R_416	4.5	773	sub	35.0	35.0	35.0	35.0	35.0	40	43	45	49	51	40	Yes
R_418	4.5	950	sub	32.9	32.9	32.9	32.9	32.9	40	43	45	49	51	40	Yes
V_420	4.5	1184	sub	30.7	30.7	30.7	30.7	30.7	40	43	45	49	51	40	Yes
V_439	4.5	634	38	36.1	36.1	36.1	36.1	36.1	40	43	45	49	51	40	Yes
V_440	4.5	891	25	36.6	36.6	36.6	36.6	36.6	40	43	45	49	51	40	Yes
V_441	4.5	915	4	36.2	36.2	36.2	36.2	36.2	40	43	45	49	51	40	Yes
V_445	4.5	971	3	36.6	36.6	36.6	36.6	36.6	40	43	45	49	51	40	Yes
V_451	4.5	791	25	37.6	37.6	37.6	37.6	37.6	40	43	45	49	51	40	Yes
V_458	4.5	1321	3	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
V_459	4.5	1114	sub	28.8	28.8	28.8	28.8	28.8	40	43	45	49	51	40	Yes
V_460	4.5	1328	1	33.4	33.4	33.4	33.4	33.4	40	43	45	49	51	40	Yes
V_462	4.5	1319	3	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
V_464	4.5	717	2	37.3	37.3	37.3	37.3	37.3	40	43	45	49	51	40	Yes
V_465	4.5	890	2	36.2	36.2	36.2	36.2	36.2	40	43	45	49	51	40	Yes
V_466	4.5	988	2	35.7	35.7	35.7	35.7	35.7	40	43	45	49	51	40	Yes
V_467	4.5	1096	2	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
V_468	4.5	1181	2	35.0	35.0	35.0	35.0	35.0	40	43	45	49	51	40	Yes
V_469	4.5	1228	2	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
V_470	4.5	1287	2	34.8	34.8	34.8	34.8	34.8	40	43	45	49	51	40	Yes
V_471	4.5	1334	2	34.8	34.8	34.8	34.8	34.8	40	43	45	49	51	40	Yes
V_472	4.5	1287	2	35.0	35.0	35.0	35.0	35.0	40	43	45	49	51	40	Yes
V_473	4.5	1253	2	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes

GL Garrad Hassan Canada, Inc.

GL**⊚**

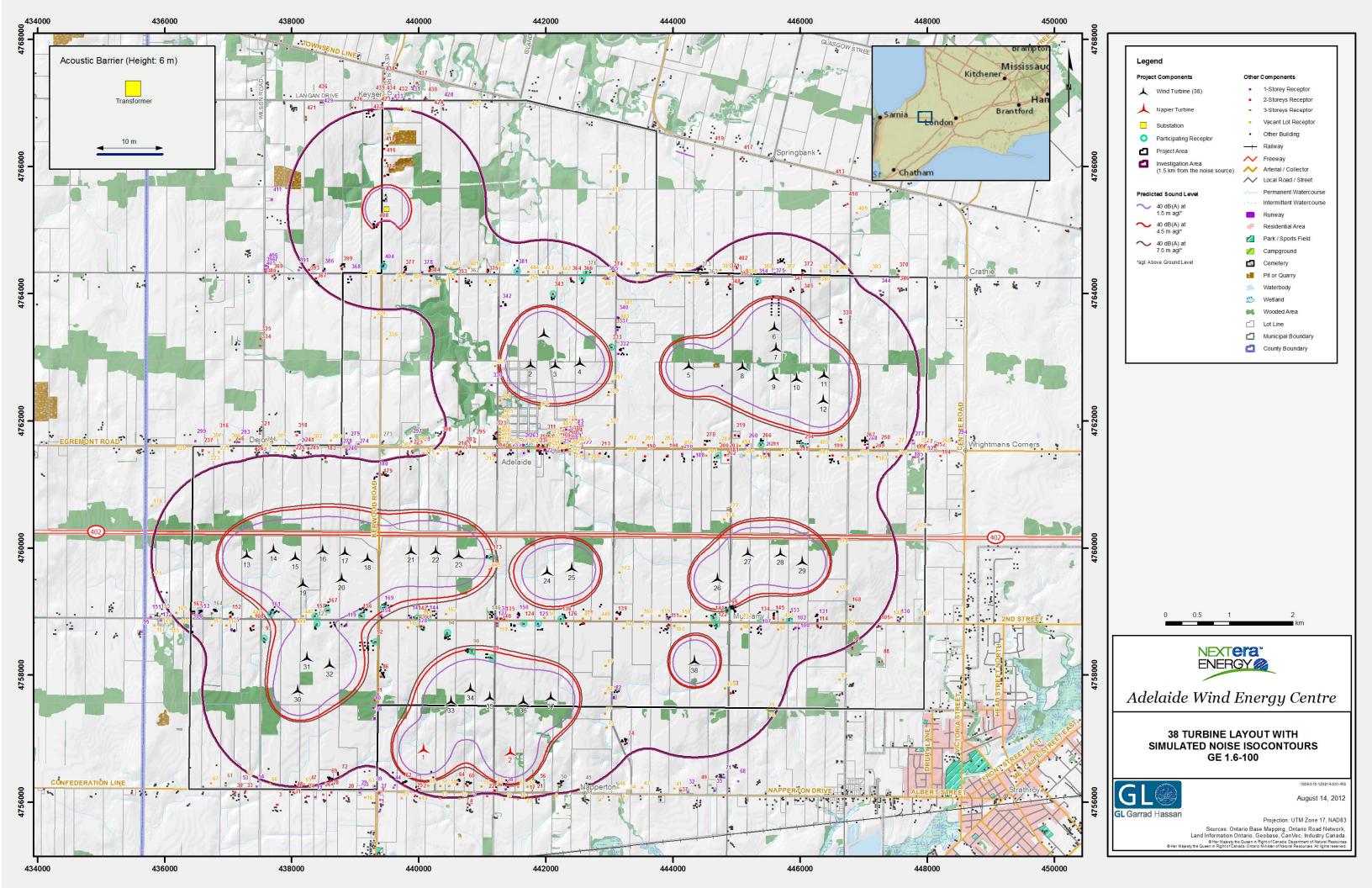
Final

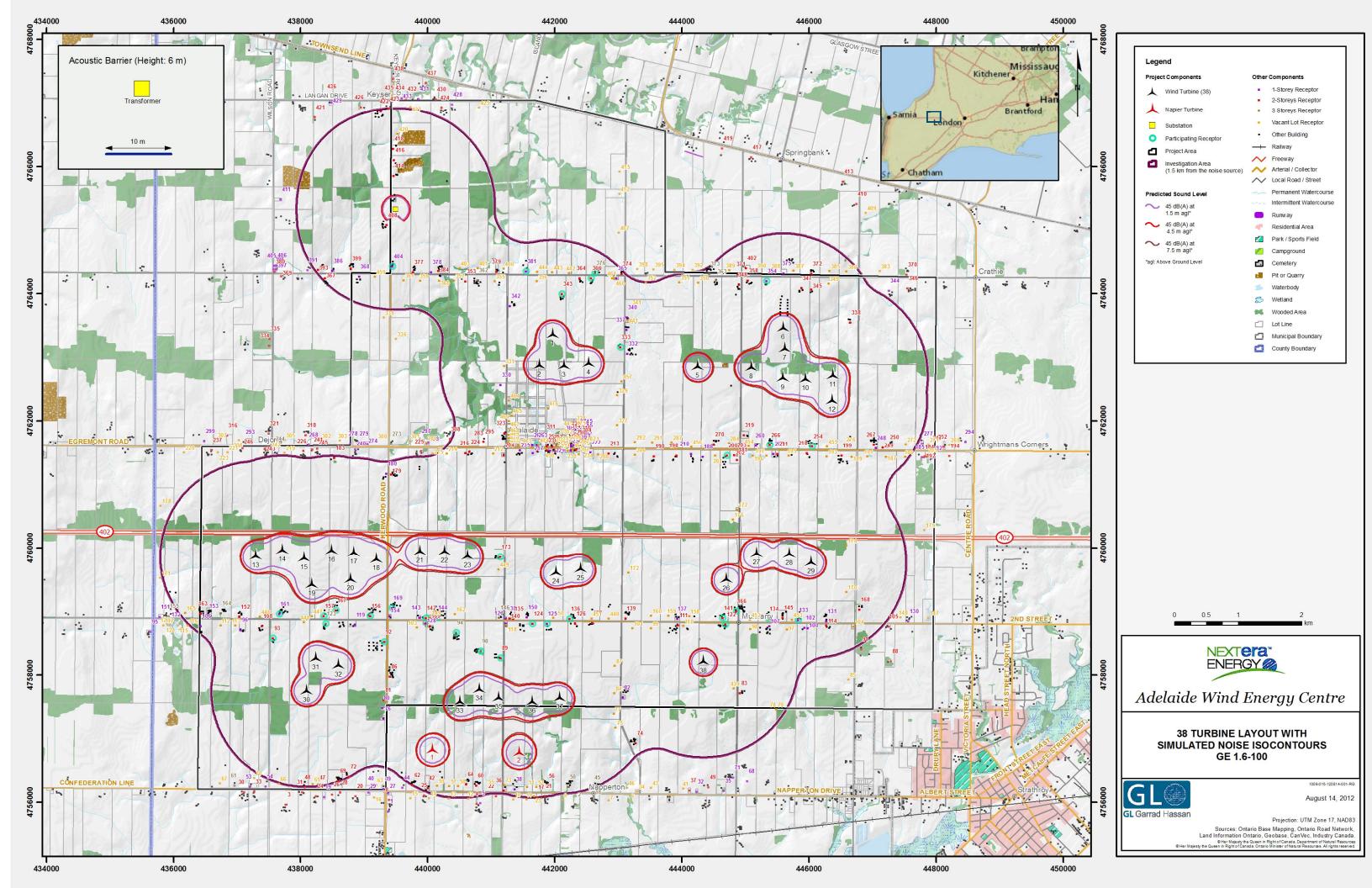
Point of	Receptor	Distance to Nearest	Nearest Turbine				Level at Red Speed in	•	Sound	Level Lim S	it [dB(A)] peed in m		l Wind	Applicable Background Sound Level	Compliance With
Reception ID	Height			6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
V_474	4.5	1241	2	35.3 35.3 35.3 35.3 35.3 40 43 45 49 51		40	Yes								
V_475	4.5	972	3	3 36.6 36.6 36.6 36.6 36.6		40	43	45	49	51	40	Yes			
V_476	4.5	673	2	39.1 39.1 39.1 39.1 39.1			40	43	45	49	51	40	Yes		

Table 7-2: Wind Turbine Noise Impact Assessment Summary – Adelaide Wind Farm – Participants

Participant ID	Height [m]	Distance to Nearest Turbine [m]	Nearest Turbine [ID]	Calculated Sound Pressure Level at Dwelling [dB(A)]
PR_89	4.5	602	34	41.0
PR_90	7.5	609	34	40.7
PR_92	4.5	819	32	39.0
PR_93	4.5	744	31	38.9
PR_94	7.5	977	34	38.9
PR_122	4.5	691	38	38.4
PR_123	7.5	572	31	42.5
PR_124	4.5	881	24	38.2
PR_125	1.5	813	24	36.7
PR_133	1.5	925	29	34.6
	4.5	906	+	37.0
PR_134			26	
PR_136	4.5	757	24	38.3
PR_141	4.5	603	26	38.8
PR_142	4.5	1047	21	38.7
PR_144	1.5	1041	22	37.0
PR_156	4.5	650	20	40.8
PR_157	4.5	521	19	42.4
PR_161	1.5	686	19	38.8
PR_166	4.5	517	26	39.4
PR_167	4.5	533	20	42.7
PR_169	1.5	791	20	38.7
PR_173	4.5	515	23	40.2
PR_200	4.5	1430	8	35.5
PR_254	4.5	780	12	37.9
PR_263	1.5	1248	2	33.8
PR_266	4.5	1064	9	37.1
PR_333	4.5	562	4	39.0
PR_343	4.5	666	1	37.2
PR_354	1.5	792	6	35.2
PR_366	4.5	1086	1	34.2
PR_376	7.5	1189	1	34.1
PR_381	1.5	1085	1	32.0
PR_404	1.5	909	sub	28.7
PV_442	4.5	1016	1	34.2
PV 443	4.5	990	1	34.2
PV 444	4.5	1027	1	33.9
PV_446	4.5	944	13	38.5
PV_447	4.5	487	19	42.3
PV_448	4.5	596	19	41.6
PV_448 PV_449	4.5	533	23	40.1
PV_449 PV_450	4.5	710	24	38.6
			ļ	
PV_452	4.5	731	26	37.7
PV_453	4.5	947	29	36.2
PV_454	4.5	1184	9	36.5
PV_455	4.5	720	12	37.8
PV_456	4.5	1252	5	34.9
PV_457	4.5	591	4	38.7
PV_461	4.5	1304	1	33.5

8 CONCLUSION


Based on the approach presented in this NIA, the Adelaide Wind Energy Centre is compliant with the MOE noise limits at all Points of Reception and Vacant Lot Receptors within 1,500 m of the Project's noise sources, for wind speeds of 6, 7, 8, 9, and 10 m/s. It should be noted that additional potential attenuation from foliage was not taken into account in this NIA, implying that the values calculated for sound attenuation are likely to be conservative in areas where there is foliage present in the line of sight between any turbine and a Point of Reception.


9 REFERENCES

- [1] Ontario Regulation 359/09 (Renewable Energy Approvals (REA)
- [2] MOE Noise Guidelines for Wind Farms, Interpretation for Applying NPC Publications, October 2008.
- [3] International Electrotechnical Commission (IEC), 2006. IEC 61400 11 Ed. 2.1 Wind turbine generator systems Part 11: Acoustic noise measurement techniques. 46 p.
- [4] GE Energy, "RE: Tonality of 1.6-100 Wind Turbine Generator", September 2012.
- [5] Handbook of Acoustics Malcolm J. Crocker, 1998.
- [6] International Organization for Standardization (ISO), 1993. Acoustics Attenuation of Sound During Propagation Outdoors Calculation of the Absorption of Sound by the Atmosphere. ISO 9613-1. 33 p.
- [7] International Organization for Standardization (ISO), 1996. Acoustics Attenuation of Sound During Propagation Outdoors General Method of Calculation. ISO 9613-2. 25 p.

APPENDIX A ZONING AND NOISE ISO-CONTOUR MAPS

APPENDIX B SAMPLE CALCULATION FOR NOISE MODELING

Resulting A-weighted Sound Pressure Level at a Points of Reception R_119 and V_73

The calculation of cumulative receptor noise levels from wind turbines uses the methodology of ISO 9613-2, "Acoustics — Attenuation of sound during propagation outdoors: Part 2: General method of calculation". These calculations are conducted with CadnaA (which is an implementation of ISO 9613-1 and ISO 9613-2).

As an example, in this appendix, the results are presented at Points of Reception R_119 and V_73. The following conditions were used:

- Turbine locations (Appendix F);
- Receptor locations (Appendix C).

Turbine characteristics and modeling parameters:

• Hub heights: 80 m (GE 1.6 100), and 100 m (MM92);

• Broadband and the octave band sound power levels (see Table 5-1: GE 1.6 100 Wind Turbine Acoustic Emission Summary

Make and Model: GE 1.6 100

Electrical Rating: 1.6 MW

Hub Height (m): 80 m

Wind Shear Coefficient: 0.35, typical summer night time shear of the region

Octave Band Sound Power Level [dBA]

			Oct	tave Ban	d Sound	Power I	Level [dl	BA]		
	Ma	nufacture	er's Emi	ssion Le	vels	1	Adjusted	Emissio	on Levels	S
Wind Speed [m/s]	6	7	8	9	10	6	7	8	9	10
Frequency [Hz]										
31.5	76.0	79.6	80.1	80.2	80.1	80.1	80.1	80.1	80.1	80.1
63	85.5	89.2	89.6	89.7	89.6	89.6	89.6	89.6	89.6	89.6
125	90.8	93.9	94.4	94.4	94.3	94.3	94.3	94.3	94.3	94.3
250	94.4	95.0	95.1	95.2	95.2	95.2	95.2	95.2	95.2	95.2
500	95.0	96.3	96.1	96.1	96.5	96.5	96.5	96.5	96.5	96.5
1000	91.3	96.4	96.9	97.0	97.2	97.2	97.2	97.2	97.2	97.2
2000	91.9	95.0	95.2	94.9	94.3	94.3	94.3	94.3	94.3	94.3
4000	88.4	89.0	88.6	87.9	87.2	87.2	87.2	87.2	87.2	87.2
8000	69.8	69.7	70.0	68.8	68.7	68.7	68.7	68.7	68.7	68.7
A-weighted	100.5	102.8	103.0	103.0	103.0	103.0	103.0	103.0	103.0	103.0

• and Table 5-2);

Ambient air temperature: 10°C;

• Ambient barometric pressure: 101.32 kPa;

• Relative humidity: 70%;

• Wind speed (10 m agl): 6 m/s;

• Source ground factor: 0.7 (soft ground);

• Middle ground factor: 0.7; and

Receptor ground factor: 0.7

• See Table 5-1: GE 1.6 100 Wind Turbine Acoustic Emission Summary

Make and Mod	lel : GE	1.6 100													
Electrical Ratin	ng : 1.6 N	ИW													
Hub Height (m):80 m														
Wind Shear Coefficient: 0.35, typical summer night time shear of the region															
	Octave Band Sound Power Level [dBA]														
	Mai	Manufacturer's Emission Levels Adjusted Emission Levels													
Wind Speed [m/s]															
Frequency [Hz]															
31.5	76.0	76.0 79.6 80.1 80.2 80.1 80.1 80.1 80.1 80.1 80.1 80.1													
63	85.5	89.2	89.6	89.7	89.6	89.6	89.6	89.6	89.6	89.6					
125	90.8	93.9	94.4	94.4	94.3	94.3	94.3	94.3	94.3	94.3					
250	94.4	95.0	95.1	95.2	95.2	95.2	95.2	95.2	95.2	95.2					
500	95.0	96.3	96.1	96.1	96.5	96.5	96.5	96.5	96.5	96.5					
1000	91.3	96.4	96.9	97.0	97.2	97.2	97.2	97.2	97.2	97.2					
2000	91.9	95.0	95.2	94.9	94.3	94.3	94.3	94.3	94.3	94.3					
4000	88.4	89.0	88.6	87.9	87.2	87.2	87.2	87.2	87.2	87.2					
8000	69.8	69.7	70.0	68.8	68.7	68.7	68.7	68.7	68.7	68.7					
A-weighted	100.5	102.8	103.0	103.0	103.0	103.0	103.0	103.0	103.0	103.0					

• for broadband and octave band sound power level;

The effect of topography was included.

The following table presents an example result and intermediate values of the calculations as the A-weighted sound pressure levels at two chosen example receptors, due to each turbine or substation and each octave band. The net result, the A-weighted sound pressure level at the example receptors R_119 and V_73 for all bands and all noise sources is $39.6 \, \mathrm{dB}(A)$ and $39.3 \, \mathrm{dB}(A)$ respectively.

Sample Calculations

Sound Pressure Levels at R_119

	Octave Band Sound Pressure Levels [dB(A)]					Total A- Weighted				
Turbine ID	Distance* [m]	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Sound Pressure Level by Turbine and for all Octave Bands [dB(A)]
N1	2354	8.1	9.0	11.3	13.6	12.7	-5.5	-66.9	N/A	18.4
N2	3313	5.2	5.7	7.4	8.9	6.3	-17.6	N/A	N/A	13.9
2	4990	8.6	4.9	1.5	-0.2	-5.1	-37.5	N/A	N/A	11.4
13	1871	15.9	14.2	12.8	13.9	14.4	0.7	-49.6	N/A	21.5
14	1605	17.3	15.7	14.4	15.7	16.7	4.6	-39.6	N/A	23.2
15	1285	19.3	17.8	16.7	18.3	19.8	9.6	-27.2	N/A	25.7
16	1192	19.9	18.5	17.4	19.1	20.7	11.1	-23.5	N/A	26.5
17	1103	20.6	19.3	18.2	19.9	21.8	12.7	-19.9	N/A	27.4
18	1062	20.9	19.6	18.6	20.3	22.2	13.4	-18.2	N/A	27.8
19	895	22.5	21.4	20.2	22.2	24.3	16.5	-11.3	N/A	29.6
20	687	24.8	24.3	22.7	24.9	27.4	20.8	-2.2	-78.4	32.5
21	1530	17.7	16.1	14.9	16.3	17.4	5.7	-36.7	N/A	23.8
22	1811	16.2	14.6	13.1	14.3	14.9	1.5	-47.4	N/A	21.9
23	2070	15.0	13.3	11.7	12.6	12.7	-2.1	-57.1	N/A	20.4
24	3272	11.7	9.0	6.7	6.5	4.6	-17.5	N/A	N/A	15.6
25	3665	10.9	8.0	5.4	4.9	2.3	-22.2	N/A	N/A	14.5
30	1314	19.1	17.6	16.4	18.0	19.5	9.1	-28.3	N/A	25.5
31	826	23.2	22.3	21.0	23.0	25.3	17.9	-8.3	N/A	30.5
32	721	24.4	23.8	22.3	24.4	26.8	20.1	-3.7	-82.8	32.0
33	2086	15.0	13.2	11.6	12.5	12.6	-2.3	-57.6	N/A	20.3
34	2238	14.3	12.5	10.9	11.6	11.5	-4.4	-63.2	N/A	19.5
35	2568	13.2	11.3	9.4	9.8	9.1	-8.8	-75.2	N/A	18.0
36	3068	12.1	9.6	7.4	7.4	5.9	-15.0	N/A	N/A	16.3
37	3445	11.3	8.6	6.1	5.8	3.6	-19.6	N/A	N/A	15.1
		Total A-	Weighte	d Sound	d Pressi	ure Leve	l			39.6

^{*}Includes the heights of noise sources and receptors and the required 30 meter radius around the 1-storey dwelling N/A indicates levels below -88.0 dBA

Sound Pressure Levels at V_{-73}

		Octave Band Sound Pressure Levels [dB(A)]					Total A- Weighted			
Turbine ID	Distance* [m]	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Sound Pressure Level by Turbine and for all Octave Bands [dB(A)]
N1	560	13.6	15.9	21.8	24.7	22.6	10.5	-25.6	N/A	28.4
N2	1260	20.8	23.5	29.6	33.1	32.2	24.3	4.4	-59.4	37.2
15	4754	8.9	6.4	6.0	4.1	-3.4	-34.9	N/A	N/A	13.0
16	4578	9.2	6.8	6.5	4.8	-2.5	-32.9	N/A	N/A	13.5
17	4347	9.6	7.3	7.2	5.6	-1.2	-30.2	N/A	N/A	14.0
18	4080	10.0	8.0	8.0	6.7	0.3	-27.1	N/A	N/A	14.7
19	4365	9.5	7.3	7.2	5.6	-1.3	-30.4	N/A	N/A	14.0
20	4034	10.1	8.1	8.1	6.8	0.6	-26.6	N/A	N/A	14.8
21	3902	10.3	8.4	8.5	7.4	1.3	-25.0	N/A	N/A	15.2
22	3784	10.6	8.7	8.9	7.8	2.0	-23.6	N/A	N/A	15.5
23	3641	10.8	9.1	9.4	8.4	2.8	-21.9	N/A	N/A	15.9
24	3435	11.2	9.6	10.1	9.3	4.1	-19.5	N/A	N/A	16.6
25	3598	10.9	9.2	9.5	8.6	3.1	-21.4	N/A	N/A	16.1
26	4753	8.9	6.4	6.0	4.1	-3.4	-34.9	N/A	N/A	13.0
30	3440	11.2	9.6	10.0	9.3	4.0	-19.5	N/A	N/A	16.5
31	3569	11.0	9.3	9.6	8.7	3.3	-21.1	N/A	N/A	16.2
32	3213	11.7	10.2	10.8	10.3	5.4	-16.8	N/A	N/A	17.3
33	1473	18.1	17.5	19.2	20.2	18.3	6.6	-34.6	N/A	25.9
34	1546	17.6	17.1	18.7	19.6	17.7	5.5	-37.4	N/A	25.4
35	1366	18.7	18.3	20.0	21.1	19.4	8.3	-30.4	N/A	26.7
36	1374	18.7	18.2	19.9	21.0	19.3	8.2	-30.7	N/A	26.7
37	1616	17.2	16.7	18.3	19.1	17.0	4.4	-40.0	N/A	24.9
38	3679	10.8	9.0	9.3	8.3	2.6	-22.4	N/A	N/A	15.8
Total A-Weighted Sound Pressure Level							39.3			

^{*}Includes the heights of noise sources and receptors

N/A indicates levels below -88.0 dBA

APPENDIX C COORDINATES OF POINTS OF RECEPTION

Coordinates of all modeled Points of Reception and Vacant Lot Receptors for the Adelaide Wind Energy Centre (UTM17-NAD83 projection) are given in the tables below:

Point of Reception ID	Easting [m]	Northing [m]
R_17	441720	4756075
R_21	441842	4756093
V_23	441670	4756094
R_36	441197	4756181
R_38	441366	4756200
R_42	440002	4756224
R_45	442598	4756229
R_50	442215	4756239
V_51	441564	4756243
V_52	441714	4756243
V_55	440988	4756249
R_56	441882	4756250
V_57	440337	4756256
V_58	440482	4756256
V_59	440150	4756258
R_60	440765	4756258
R_62	439769	4756263
R_64	440605	4756282
V_65	438195	4756284
R_69	438603	4756336
R_72	438767	4756399
V_73	441203	4756271
R_74	443272	4756926
V_75	442958	4757175
R_76	439303	4757317
V_77	442928	4757390
V_78	445484	4757462
V_79	445484	4757462
R_80	439284	4757478
R_81	439309	4757608
R_82	443072	4757647

Point of Reception ID	Easting [m]	Northing [m]
R_83	444912	4757711
V_84	442939	4757713
R_86	439409	4757971
V_87	442941	4758147
R_96	437056	4758714
V_97	445653	4758716
V_98	445076	4758724
V_99	443513	4758734
R_100	445980	4758739
V_101	443224	4758740
R_102	445928	4758743
V_103	439828	4758749
V_104	446697	4758759
R_106	436426	4758768
R_107	445375	4758770
R_108	437395	4758770
R_109	440037	4758770
V_110	444023	4758772
R_111	443943	4758778
V_112	436743	4758779
V_113	436976	4758779
R_114	446273	4758781
V_118	441238	4758788
R_119	438850	4758789
R_126	442321	4758808
R_127	441227	4758810
R_128	439964	4758816
R_129	442586	4758816
R_131	446272	4758847
R_135	441344	4758884
R_137	443929	4758885

Point of Reception ID	Easting [m]	Northing [m]
R_138	441230	4758887
R_139	443113	4758889
R_140	441286	4758889
R_143	439869	4758901
R_145	445584	4758902
R_146	441122	4758902
V_149	440040	4758906
R_150	441560	4758908
R_152	437038	4758917
R_153	436541	4758925
R_154	439397	4758925
V_158	444116	4758930
V_159	443788	4758933
V_160	443518	4758935
V_162	440427	4758961
R_163	436426	4758963
R_164	436743	4758970
V_165	436186	4758980
R_168	446792	4759026
V_170	446591	4759309
V_172	443158	4759613
V_174	446588	4760048
V_176	444804	4760454
V_177	444872	4760605
R_179	439423	4761154
R_180	439352	4761171
R_181	444870	4761383
R_183	438531	4761414
V_186	447516	4761433
V_187	447214	4761436
R_188	444329	4761437

33

Point of Reception ID	Easting [m]	Northing [m]
V_189	446672	4761438
V_191	446921	4761441
V_193	446280	4761444
V_195	445682	4761452
V_196	445116	4761454
V_197	445330	4761454
R_198	443914	4761456
R_199	446510	4761456
V_201	444523	4761457
R_202	444822	4761459
R_203	444866	4761460
V_207	442378	4761475
V_208	442685	4761475
R_209	445440	4761479
R_210	444144	4761480
R_211	445505	4761483
R_213	442850	4761488
R_217	441653	4761493
R_218	445969	4761495
R_222	442560	4761507
R_227	442037	4761526
R_228	441921	4761529
R_229	441995	4761531
V_230	442204	4761531
V_231	442074	4761533
R_232	441725	4761533
R_233	442254	4761533
V_234	442439	4761534
R_235	441449	4761538
R_236	441876	4761538
R_238	442334	4761547

Point of Reception ID	Easting [m]	Northing [m]
R_239	442101	4761547
R_248	447051	4761577
R_249	447161	4761579
R_250	447248	4761586
V_251	442057	4761592
R_253	441959	4761594
R_255	442259	4761601
R_256	442342	4761602
R_257	441877	4761602
R_258	442311	4761611
R_259	442221	4761612
R_260	445167	4761612
R_261	442402	4761614
V_262	442371	4761616
R_264	441647	4761619
R_265	442253	4761620
R_267	447019	4761625
R_270	444500	4761630
V_272	447524	4761634
V_275	442058	4761642
V_276	446563	4761642
V_280	441990	4761648
V_281	442537	4761648
V_282	442480	4761649
V_284	444738	4761655
V_285	442103	4761660
V_287	443841	4761663
R_289	442416	4761665
R_290	442323	4761665
V_291	443534	4761666
V_292	443264	4761668

Point of Reception ID	Easting [m]	Northing [m]
R_295	440879	4761674
V_296	442256	4761678
R_304	442411	4761701
R_309	442324	4761731
R_310	442408	4761732
R_311	441993	4761755
V_312	442117	4761765
V_313	442048	4761765
R_314	442243	4761766
R_315	442428	4761770
R_317	442367	4761774
R_319	444973	4761778
R_320	442242	4761797
R_322	442324	4761805
R_323	441212	4761811
R_324	442371	4761836
R_325	442430	4761840
R_326	442321	4761874
V_327	442981	4761936
V_328	442321	4761978
V_329	442984	4762407
R_330	441146	4762567
V_331	441200	4762863
R_332	443140	4763056
R_337	443128	4763430
R_338	446649	4763542
R_340	443131	4763628
V_341	443201	4763790
R_342	441292	4763805
R_345	446039	4764066
R_347	445882	4764085

GL@

Point of Reception ID	Easting [m]	Northing [m]
R_348	444897	4764144
V_349	446307	4764158
V_350	444259	4764174
V_351	443963	4764177
V_355	441055	4764198
V_356	441719	4764198
V_357	440414	4764203
R_358	445034	4764206
V_359	439883	4764206
V_360	440182	4764206
V_361	439621	4764208
R_362	440787	4764211
R_363	444536	4764214
R_364	442391	4764241
R_365	442971	4764244
R_368	438921	4764270
R_371	444879	4764308
R_372	446038	4764313
R_373	444429	4764314
R_374	443049	4764315
R_375	445596	4764316
R_377	439771	4764337
R_378	440056	4764339
R_379	441085	4764344
V_382	446590	4764351
R_384	440169	4764357
V_385	446323	4764359
R_386	438500	4764359
V_387	445756	4764362
V_388	445397	4764365
V_389	444748	4764367

Point of Reception ID	Easting [m]	Northing [m]
V_390	445164	4764367
R_399	438790	4764393
V_400	441195	4764396
R_402	445009	4764400
V_403	440502	4764402
R_408	439355	4765081
R_414	439465	4765854
R_416	439468	4766107
R_418	439458	4766283
V_420	439528	4766518
V_439	444820	4757792
V_440	442851	4758890
V_441	443146	4763574
V_445	442241	4761891
V_451	442579	4758890
V_458	442018	4761542
V_459	439173	4764268
V_460	442939	4764246
V_462	442284	4761546
V_464	441281	4762327
V_465	441321	4762088
V_466	441277	4762000
V_467	441279	4761878
V_468	441276	4761786
V_469	441276	4761734
V_470	441276	4761670
V_471	441277	4761620
V_472	441430	4761620
V_473	441599	4761622
V_474	441745	4761624
V_475	442320	4761901

Point of	Easting	Northing
Reception ID	[m]	[m]
V_476	441889	4762205

APPENDIX D COORDINATES OF PARTICIPANTS

Coordinates of all modeled participants for the Adelaide Wind Energy Centre (UTM17-NAD83 projection) are given in the table below.

Participant ID	Easting [m]	Northing [m]
PR_89	441145	4758265
PR_90	440833	4758373
PR_92	439319	4758521
PR_93	437566	4758576
PR_94	440444	4758669
PR_122	444685	4758796
PR_123	438394	4758805
PR_124	441649	4758806
PR_125	441873	4758807
PR_133	445824	4758864
PR_134	445361	4758883
PR_136	442235	4758884
PR_141	444639	4758896
PR_142	439969	4758896
PR_144	440144	4758901
PR_156	439096	4758927
PR_157	438364	4758928
PR_161	437664	4758957
PR_166	444852	4759004
PR_167	438554	4759016
PR_169	439437	4759052
PR_173	441138	4759859
PR_200	444711	4761456
PR_254	446051	4761598
PR_263	441719	4761618
PR_266	445382	4761621
PR_333	443029	4763156
PR_343	442111	4763994
PR_354	445329	4764198
PR_366	442570	4764245
PR_376	442634	4764327
PR_381	441549	4764348
PR_404	439445	4764426
PV_442	442228	4764326
PV_443	441958	4764335
PV_444	441723	4764344

Participant ID	Easting [m]	Northing [m]
PV_446	437363	4758923
PV_447	438183	4758927
PV_448	438055	4758830
PV_449	441117	4759664
PV_450	441977	4758899
PV_452	445073	4758871
PV_453	445734	4758867
PV_454	445052	4761608
PV_455	446284	4761598
PV_456	444151	4761597
PV_457	443052	4762624
PV_461	442906	4764245

APPENDIX E TURBINE TECHNICAL SPECIFICATIONS

Noise Specifications of the GE 1.6 - 100

GE Energy

- Original Instructions -

Product Acoustic Specifications

2 Normal Operation Calculated Apparent Sound Power Level

The apparent sound power levels $L_{\text{WA}k}$ are initially calculated as a function of the hub height wind speed v_{HH} . The corresponding wind speeds v_{10m} at 10 m height above ground level have been evaluated assuming a logarithmic wind profile. In this case a surface roughness of $z_{\text{0ref}} = 0.05$ m has been used, which is representative of average terrain conditions.

$$v_{10m} = v_{HH} \frac{\ln \left(\frac{10m}{Z_{0ref}}\right)}{\ln \left(\frac{hub\ height}{Z_{0ref}}\right)} \quad *$$

The calculated apparent sound power levels $L_{WA,k}$ and the associated octave-band spectra are given in Table 1 and Table 2 for two different hub heights. The values are provided as mean levels as a function of v_{10m} for Normal Operation (NO) over cut-in to cut-out wind speed range. The uncertainties for octave sound power levels are generally higher than for total sound power levels. Guidance is given in IEC 61400-11, Annex D.

1.6-100 with LNTE – A-weighted Octave Spectra (dB)									
Standardized WS	at 10 m (m/s)	5	5.5	6	6.5	7	8	9	10-Cutout
Hub height WS at	80 m (m/s)	7.0	7.7	8.4	9.1	9.7	11.1	12.5	14-Cutout
Frequency (Hz)	32	72.1	74.2	76.0	77.8	79.6	80.1	80.2	80,1
	63	81.4	83.5	85.5	87.4	89.2	89.6	89.7	89,6
	125	86.5	88.8	90.8	92.3	93.9	94.4	94.4	94,3
	250	89.7	92.1	94.4	94.7	95.0	95.1	95.2	95,2
	500	89.7	92.4	95.0	95.7	96.3	96.1	96.1	96,5
	1000	86.9	89.1	91.3	93.9	96.4	96.9	97.0	97,2
	2000	87.9	90.1	91.9	93.4	95.0	95.2	94.9	94,3
	4000	83.5	86.1	88.4	88.6	89.0	88.6	87.9	87,2
	8000	63.5	66.7	69.8	69.3	69.7	70.0	68.8	68,7
	16000	18.9	21.5	24.2	25.3	26.5	26.1	26.9	28,8
Total Sound Power	r Level (dB)	95.8	98.2	100.5	101.6	102.8	103.0	103.0	103.0

Table 1: Normal Operation Calculated Apparent Sound Power Level, 1.6-100 with LNTE with 80 m hub height as a function of 10 m wind speed ($z_{0ref} = 0.05$ m), the octave band spectra are for information only

CONFIDENTIAL - Proprietary Information. DO NOT COPY without written consent from General Electric Company.

UNCONTROLLED when printed or transmitted electronically.

© 2012 General Electric Company. All rights reserved

6/11

1.6-100_xxHz_SCD_allComp_NO_IEC_LNTE.ENxxx.00.docx

^{*} Simplified from IEC 61400-11, ed. 2.1: 2006 equation 7

REPower MM92 2.05 MW Turbine

Power Curve & Sound Power Level REpower MM92 [2050 kW]

2 Guaranteed electrical Power Curve und guaranteed Sound Power Level²

Wind speed	Power	Sound Power Level	Thrust	Power coefficient
v [m/s] 3	P [kW]	L _{WA} [dB(A)] 4	coefficient	ср [-]
			ct[-]	
3.0	20		0.98	0.180
4.0	94		0.87	0.357
5.0	205		0.79	0.398
6.0	391	100.4	0.79	0.440
7.0	645	101.8	0.79	0.457
8.0	979	103.3	0.79	0.465
9.0	1375	104.2	0.74	0.458
10.0	1795	104.2	0.69	0.436
11.0	2000	104.2	0.54	0.365
12.0	2040	104.2	0.39	0.287
13.0	2050	104.2	0.29	0.227
14.0	2050	104.2	0.23	0.182
15.0	2050	104.2	0.19	0.148
16.0	2050	104.2	0.15	0.122
17.0	2050	104.2	0.13	0.101
18.0	2050	104.2	0.11	0.085
19.0	2050	104.2	0.09	0.073
20.0	2050	104.2	0.08	0.062
21.0	2050	104.2	0.07	0.054
22.0	2050	104.2	0.06	0.047
23.0	2050	104.2	0.06	0.041
24.0	2050	104.2	0.05	0.036

Document-No.: SD-2.9-WT.PC.03-B-B-EN

Date of Release: 2009-05-11

ISO 16016 protective note to be attended-

Page 6 of 7

² Valid for unrestricted operation only. During sound reduced operation different power and sound levels are effective.

³ Wind speed at hub height

⁴ Sound power level at hub height

APPENDIX F COORDINATES OF TURBINES

Coordinates of the proposed 38 turbine positions are shown below, though only 37 will be installed in the Adelaide Wind Farm. Coordinates are listed in UTM17-NAD83 projection:

Turbine ID	Easting [m]	Northing [m]
1	441963	4763345
2	441755	4762865
3	442142	4762857
4	442529	4762899
5	444245	4762845
6	445590	4763450
7	445620	4763125
8	445087	4762836
9	445586	4762665
10	445939	4762651
11	446370	4762704
12	446360	4762314
13	437290	4759864
14	437710	4759955
15	438055	4759832
16	438483	4759952
17	438837	4759917
18	439187	4759817
19	438176	4759414
20	438783	4759497
21	439875	4759939
22	440261	4759935
23	440623	4759864
24	442013	4759608
25	442404	4759661
26	444694	4759496
27	445175	4759905
28	445687	4759898
29	446031	4759766
30	438092	4757738
31	438237	4758255
32	438593	4758143
33	440506	4757566
34	440812	4757764
35	441115	4757631
36	441641	4757570
37	442072	4757631
38	444335	4758200
Substation	439495	4765334

Coordinates of turbines used to simulate the Napier Wind Farm Noise Emission are listed below in UTM17-NAD83 projection:

Turbine ID	Easting [m]	Northing [m]
N1	440070	4756813
N2	441440	4756768

Coordinates of the end points of the substation's sound barrier are listed below in UTM17-NAD83 projection:

ID	Easting [m]	Northing [m]
B1a	439498	4765324
B1b	439488	4765324