REFERENCES

GENERAL REFERENCES

- 1. G.P. van den Berg. "The Sounds of High Winds: the effect of atmospheric stability on wind turbine sound and microphone noise." Doctoral dissertation, University of Groningen, Netherlands, May 2006.
- 2. G.P. van den Berg. "Effect of the wind profile at night on wind turbine sound." Journal of Sound and Vibration, Vol. 277(4), 2004.
- 3. G.P. van den Berg. "Wind Gradient Statistics Up to 200m Altitude over Flat Ground." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 4. G.P. van den Berg. "Mitigation Measures for Night-time Wind Turbine Noise." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 5. E. Pedersen and K.P. Waye "Human Response to Wind Turbine Noise Annoyance and Moderating Factors." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 6. Geoff Levanthall. "How The 'Mythology' of Infrasound and Low Frequency Noise Related to Wind Turbines Might have developed." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 7. Mark Bastasch. "Regulation of Wind Turbine Noise in the Western United States." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 8. Mark Bastasch. "Revising Oregon's Noise Regulations for Wind Turbines." Proceedings of Noise-Con 2004, Baltimore, July 2004.
- 9. Ministry of the Environment, "Request for Services for Expert Advice on Wind Turbine Facilities Noise Issues." April 23, 2007.
- 10. Ministry of the Environment, "Interpretation for Applying MOE NPC Technical Publications to Wind Turbine Generators." PIBS 4709e, 6 July, 2004.
- 11. Harvey H. Hubbard et al. "Noise Characteristics of Large Wind Turbine Generators." Noise Control Engineering Journal, Vol. 12 (1), 1983.
- 12. Kevin Sheppard et al. "Evaluation of Human Exposure to the Noise from Large Wind Turbine Generators." Noise Control Engineering Journal, Volume 12 (1), 1983.
- 13. Mark Bastasch, Jeroen van Dam, Bo Søndergaard and Anthony Rogers. "Wind Turbine Noise An Overview." Canadian Acoustics Journal. Special issue on Wind Turbine Noise. Volume 34(2), June 2006.
- 14. Geoff Leventhall. "Infrasound from Wind Turbines Fact, Fiction or Deception." Canadian Acoustics Journal. Special issue on Wind Turbine Noise. Volume 34(2), June 2006.
- 15. K. D. Kryter. "The Effects of Noise on Man." Academic Press. 1970.
- 16. Bradley, J.S., "NEF Validation Study: Review of Airport Noise and Its Effects," Report A-1505.5 (Final), 149 pages, December 1996.
- 17. A. D. Lightstone, "Environmental Noise Assessment of Wind Farms." Canadian Acoustics Journal. Special issue on Wind Turbine Noise. Volume 34(2), June 2006.

- 18. E. Pederson and H.I. Halmstad, "Noise Annoyance from Wind Turbines a Review." Swedish Enviornmental Protection Agency, Report 5308, August 2003.
- 19. AIR-EIA, "Atmospheric Stability." Obtained from: www.ess.co.at/AIR-EIA/stability.html.
- E. Pedersen and K. P. Waye, "Pereception and Annoyance due to Wind Turbine Noise A Dose-Response Relationship." Journal of the Acoustical Society of America, Vol. 116 (6), 2004.
- 21. Mark Bastasch of Oregon Personal Communication, 2007.
- 22. P. Botha, "The Use of 10 m Wind Speed Measurements in the Assessment of Wind Fram Developments." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 23. E. Sloth, "Modelling of Noise from Wind Farms and Evaluation of the Noise Annoyance." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 24. B. Sondergaard, "Noise Measurements according to IEV 61400-11. How to Use the Results." Proceedings of Wind Turbine Noise 2005, Berlin, October 2005.
- 25. B. Regan and T. G. Casey, "Wind Turbine Noise Primer." Canadian Acoustics Journal. Special issue on Wind Turbine Noise. Volume 34(2), June 2006.
- 26. International Standard, IEC 61400-11. "Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques." Edition 2.1, 2006-11.
- 27. C. Tickell, "Wind Farm Noise Assessment in Australia and Model Comparison." Canadian Acoustics Journal. Special issue on Wind Turbine Noise. Volume 34(2), June 2006.
- 28. B. Howe and N. McCabe, "Assessment of Noise and Infrasound at the Pubnico Point Wind-Energy Facility, Nova Scotia." Proceedings of 2007 Spring Conference on Environmental and Occupational Noise, Banff, Alberta, 2007.
- 29. J. M. Tyler and T. G. Sofrin, "Axial Flow Compressor Noise Studies." Society of Automotive Engineering Transactions. Vol. 70. pp. 309-332, 1962.
- 30. UK DTI Report. "The Measurement of Low Frequency Noise At Three UK Wind Farms by Hayes Mackenzie Partnership." Autumn 2006.
- 31. ISO 7196. "Acoustics Frequency-weighting characteristics for infrasound measurements." International Standards Organization, Geneva, 1995.
- 32. R. Ramakrishnan and N. Sylvestre-Williams, "Wind Turbine Noise and Meteorological Influences." Proceedings of Acoustic Week in Canada, Montreal, October 2007.
- J. Kowalewski, "Ontario Ministry of the Environment Noise Guidelines on Wind Power Projects." Canadian Acoustics Journal. Special issue on Wind Turbine Noise. Volume 34(2), June 2006.
- 34. Independent Electricity System Operator (IESO), www.IESO.ca.

REFERENCES - 2

NOISE REGULATIONS

- R1 WHO Berglund, Birgitta, Thomas Lindvall and Dietrich H. Schwela. <u>Guidelines for Community</u> Noise. Document prepared for the World Health Organization: Geneva. April 1999.
- R2. Ontario, Canada Ontario Ministry of the Environment. <u>Interpretation For Applying MOE NPC</u> <u>Technical Publications to Wind Turbine Generators</u>. July 6, 2004.
- R3. Alberta, Canada Alberta Energy and Utilities Board. <u>Directive 038 Noise Control</u>. Revised Edition, February 16, 2007. PDF Available through the EUB website <<u>http://www.eub.ca/docs/documents/directives/Directive038.pdf</u>>.
- R4. British Columbia, Canada Ministry of Agriculture and Lands Staff, British Columbia. <u>Land Use</u> <u>Operational Policy: Wind Power Projects</u>. October 21, 2005.
- R5. Quebec, Canada <u>Instruction Memo 98-01 on Noise (Note Revised as of June 9, 2006)</u>. June 9, 2006.
- R6. Oregon, USA Bastasch, Mark. <u>Revising Oregon's Noise Regulations For Wind Turbines</u>. Noise-Con 2004: Baltimore, Maryland. July 12, 2004.
- R7. Pennsylvania Office of Energy and Technology Deployment, Pennsylvania Department of Environmental Protection. <u>Model Wind Ordinance for Local Governments</u>. December 08, 2006. Available through DEP website:
 http://www.depweb.state.pa.us/energy/cwp/view.asp?a=1370&Q=485761>.
- R8. Washington, USA Washington State Department of Ecology. <u>Chapter 173-60 WAC Maximum</u> <u>Environmental Noise Levels</u>. December 06, 2000. Available through the Washington State Department of Ecology website http://www.ecy.wa.gov/laws-rules/noise.htm.
- R9. Michigan, USA Energy Office, Michigan Department of Labor and Economic Growth. <u>Michigan</u> <u>Wind Energy System Siting Guidelines Draft #8</u>. October 12, 2005. Available in PDF format <http://www.powernaturally.org/Programs/Wind/WindSolarSitGuidlinesDraft.pdf>.

- R10. Maine, USA Maine Department of Environmental Protection. <u>Chapter 375: No Adverse</u> <u>Environmental Effect Standard of the Site Location Law</u>. February 17, 2006. Available through Maine State website .
- R11. New York, USA NYS Energy Research & Development Authority. "Local Law No. 1 of 2005; Town of Clinton." Power Naturally publication: Examples of NY Local Government Laws/Zoning Provisions on Wind. October 2005. pp. 36-55. Available online at http://www.powernaturally.org/Programs/Wind/toolkit/3_revised.pdf>.
- R12. United Kingdom The Working Group on Noise from Wind Farms. <u>ETSU-R-97: The Assessment</u> and Rating of Noise from Wind Farms. September 1996. Available through the British Department for Business, Enterprise, and Regulatory Reform website http://www.dti.gov.uk/energy/sources/renewables/publications/page21743.html>.
- R13. Ireland Department of Environment, Heritage and Local Government, Ireland. <u>Wind Energy</u> <u>Development Guidelines</u>. 2006. Available through Ireland Department of Environment, Heritage and Local Government website <<u>http://www.environ.ie/en/Publications/DevelopmentandHousing/Planning/></u>.
- R14. Denmark Ministry of the Environment, Denmark. Translation: L.K. <u>Statutory Order From the Ministry of the Environment No. 304 of May 14, 1991, On Noise From Windmills</u>. Trans. June 1991. Available through Danish Environmental Protection Agency Homepage. http://glwww.mst.dk/homepage/>.
- R15. Germany TA Lärm (Techniche Anleitung zum Schutz gehen Lärm, Germany), 1998.
- R16. The Netherlands Bseluit van 18 oktober 2001, houdende regels voor voorziengen en installaties;
 Besluit voorziengen en installaties milieubeheer; Staatsblad van het Koninkrijk der Nederlanden 487.
- R17. Australia Environment Protection Authority of South Australia. <u>Environmental Noise Guidelines:</u> <u>Wind Farms</u>. February 2003.

- R18. Australia Western Australian Planning Commission. <u>Planning Bulletin 67: Guidelines for Wind</u> <u>Farm Development</u>. May 2004.
- R19. New Zealand New Zealand Standards Council. <u>NZS 6808: 1998: Acoustics The Assessment</u> and Measurement of Sound From Wind Turbine Generators. 1998.

APPENDIX A

INTERPRETATION FOR APPLYING MOE NPC TECHNICAL PUBLICATIONS TO WIND TURBINE GENERATORS

INTERPRETATION FOR APPLYING MOE NPC TECHNICAL PUBLICATIONS TO WIND TURBINE GENERATORS

Noise impacts of proposed wind turbine generators, i.e. wind turbines, are considered in the course of assessing an application for a Certificate of Approval (Air), in accordance with Section 9 of the Environmental Protection Act. The purpose of this guidance document is to assist proponents of wind turbine installations in determining what information should be submitted when applying for a Certificate of Approval (Air). It has been developed in order to provide consistency in the submissions and to streamline the review and approval process.

As a minimum, the information package must include details of the wind turbine design and operation, location of the wind turbine within the specific site and surrounding area as well as summary of compliance applicable to noise. The following defines a template for reports to be submitted to the MOE. This information is supplementary to the information in MOE Publication NPC-233, Information to be Submitted for Approval of Stationary Sources of Sound.

REFERENCES

- [1] NPC-102 Instrumentation
- [2] NPC-103 Procedures
- [3] NPC-104 Sound Level Adjustments
- [4] NPC-205 Sound Level Limits for Stationary Sources in Class 1 & 2 Areas (Urban)
- [5] NPC-206 Sound Levels due to Road Traffic
- [6] NPC-232 Sound Level Limits for Stationary Sources in Class 3 Areas (Rural)
- [7] NPC-233 Information to be Submitted for Approval of Stationary Sources of Sound
- [8] IEC 61400-11 "Wind turbine generator systems Part 11: Acoustic noise measurement techniques -International Restrictions", Dec. 2002
- [9] ISO 9613-2 "Acoustics-Attenuation of sound during propagation outdoors Part 2: General method of calculation", Dec. 1996
- [10] ETSU-R-97 "The Assessment and Rating of Noise from Wind Farms", Final Report, September 1996

TECHNICAL DEFINITIONS

"Class 1 Area"

means an area with an acoustical environment typical of a major population centre, where the background noise is dominated by the urban hum.

"Class 2 Area"

means an area with an acoustical environment that has qualities representative of both Class 1 and Class 3 Areas, and in which a low ambient sound level, normally occurring only between 23:00 and 07:00 hours in Class 1 Areas, will typically be realized as early as 19:00 hours.

Other characteristics which may indicate the presence of a Class 2 Area include:

- i. absence of urban hum between 19:00 and 23:00 hours;
- ii. evening background sound level defined by natural environment and infrequent human activity; and
- iii. no clearly audible sound from stationary sources other than from those under consideration.

"Class 3 Area"

means a rural area with an acoustical environment that is dominated by natural sounds having little or no road traffic, such as the following:

- i. a small community with less than 1000 population;
- ii. agricultural area;
- iii. a rural recreational area such as a cottage or a resort area; or a wilderness area.

Point of Reception

"Point of Reception" means any point on the premises of a person within 30 m of a dwelling or a camping area, where sound or vibration originating from other than those premises is received.

For the purpose of approval of new sources, including verifying compliance with Section 9 of the Act, the Point of Reception may be located on any of the following existing or zoned for future use premises: permanent or seasonal residences, hotels/motels, nursing/retirement homes, rental residences, hospitals, camp grounds, and noise sensitive buildings such as schools and places of worship.

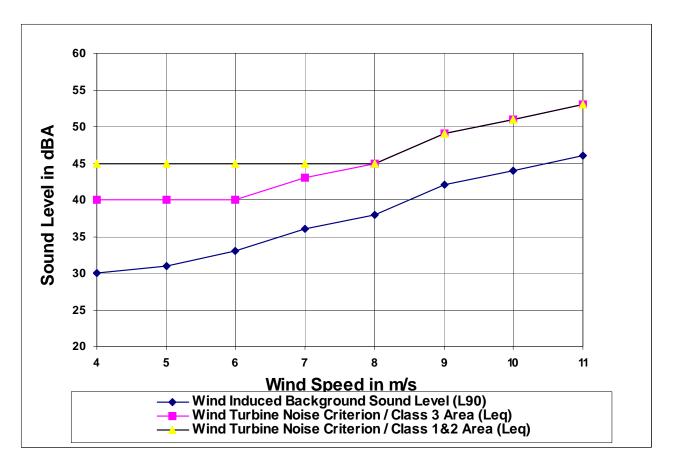
For equipment/facilities proposed on premises such as nursing/retirement homes, rental residences, hospitals, and schools, the Point of Reception may be located on the same premises.

NOISE LIMITS

The noise limits for a wind turbine or an array of such units (referred to as a "wind farm") are set relative to the existing MOE Noise Guidelines in NPC-205/NPC-232 as well as to the wind generated background noise. The proponents are required to demonstrate compliance with the following sound level limits:

Wind turbine installations in Class 1 & 2 Areas (Urban) Wind speeds below 8 m/s

The lowest sound level limit at a Point of Reception in Class 1 & 2 Areas (Urban), under conditions of average wind speed up to 8 m/s (29 km/h), expressed in terms of the hourly equivalent sound level (Leq) is 45 dBA or the minimum hourly background sound level established in accordance with requirements in Publications NPC-205/NPC-233, whichever is higher.


Wind Turbine Installations in Class 3 Areas (Rural) Wind speeds below 6 m/s

The lowest sound level limit at a Point of Reception in Class 3 Areas (Rural), under conditions of average wind speed up to 6 m/s (22 km/h), expressed in terms of the hourly equivalent energy sound level (Leq) is 40 dBA or the minimum hourly background sound level established in accordance with requirements in Publications NPC-232/NPC-233, whichever is higher.

Wind Turbine Installations in Class 1& 2 and Class 3 Areas Wind speeds above 8 and 6 m/s respectively

The sound level limit at a Point of Reception in Class Areas 1 & 2 (Urban) or in Class 3 Areas (Rural), under conditions of average wind speed above 8 m/s and 6 m/s respectively, expressed in terms of the hourly equivalent energy sound level (Leq), is the wind induced background sound level, expressed in terms of ninetieth percentile sound level (L_{A90}) plus 7 dB, or the minimum hourly background sound level established in accordance with requirements in Publications NPC-205/NPC-232/NPC-233, whichever is higher.

A summary of the above limits is shown in figure and table below.

Wind Speed (m/s)	4	5	6	7	8	9	10	11
Wind Turbine Noise Criterion NPC-232 (dBA)	40	40	40	43	45	49	51	53
Wind Turbine Noise Criterion NPC-205 (dBA)	45	45	45	45	45	49	51	53

NOTE:

- 1. The measurement of wind induced background sound level is not required to establish the applicable criterion. The wind induced background sound level reference curve in the figure above was determined by correlating the ninetieth percentile sound level (L_{A90}) with the average wind speed measured at a particularly quiet site.
- 2. If the existing minimum hourly background sound level, established in accordance with requirements in Publications NPC-205/NPC-232/NPC-233, is selected as the sound level limit, the measurement of wind speed (for the purpose of determination of wind induced background sound level) is not required. The selected limit applies in the entire range of wind speed under consideration from 4 m/s to 11 m/s with exception of the wind turbine noise criterion values higher than the existing minimum hourly background sound level.
- 3. Wind Turbine Noise Criterion at wind speeds expressed as fractional values of m/s should be interpolated from the above graph.

REPORT CONTENTS AND FORMAT

The noise report must contain the required information, organized in a clear and concise manner. The report should include the following sections in the given sequence:

1. Introduction

Objectives of report

2. General Description of Wind Turbine Installation Site and Surrounds

Description of the site general environment, including: adjacent zoning, sensitive receiver locations (Points of Reception); suitable mapping of the site and surrounding area, providing elevations of source receivers and intervening structures or topography where applicable to the assessment;

3. Description of Receptors

Detailed acoustical description of the area surrounding the facility including: Identification of the closest and/or the critical Points of Reception, identifying noise sensitive residential or institutional uses - (industrial, commercial uses are also desirable information); Determination of the applicable minimum hourly background sound level limit at the critical Points of Reception, in accordance with NPC 205/232 and NPC-233;

4. Description of Sources

Description of the wind turbine (wind farm) including: manufacturer & model number; Design principle & geometric configuration (horizontal, vertical, upwind, downwind, rotor diameter and centre height, blade type, number of blades, tower height); Power train (direct from rotor to generator, indirect through gearbox); Operating details (single, twin or variable speed, power curve, generator rated power output and rotational speed); Park lay-out (for a wind farm);

5. Wind Turbine Noise Emission Rating

Noise emission levels in terms of sound power level of the wind turbine as a function of wind speed (determined in accordance with IEC 61400-11 method), provided by the wind turbine manufacturer;

6. Impact Assessment

Calculation of the sound pressure level at each critical Point of Reception for each wind turbine or an aggregate of units (wind farm) using ISO 9613 method.

Noise impact assessment under a "worst case scenario" at the critical Points of Reception, up to a distance of 1000 m from the wind turbine (or closest unit in a wind farm); Impact assessment is not required for Points of Reception farther than 1000 m from the wind turbine (or closest unit in a wind farm);

Comparison with the applicable noise limit;

7. Wind Turbine Summary Tables

Wind Turbine Source Summary Table and Wind Turbine Assessment Summary Table; (samples attached);

8. Conclusions and Recommendations

Summary of impacts and verification of compliance with the noise limits;

9. Appendices, etc.

Details of measurements and calculations, specifications, plans, eng. dwgs, etc.

WIND TURBINE SUMMARY TABLES

The noise report must contain Wind Turbine Summary Tables, summarising the results of the Acoustical Report and demonstrating compliance. The Wind Turbine Summary Tables must address pertinent source(s) and receptors (Points of Reception).

The information in the Wind Turbine Summary Tables must be presented in two tables:

- 1. Wind Turbine Source Summary Table
- 2. Wind Turbine Assessment Summary Table

The following examples of summary tables must be incorporated into the report:

Wind Turbine Noise Emission Summary Table

(add rows for additional sources)

		Max PWL at wind	PWL at selected wind speed in m/s						
Wind Turbine ID		speed <6 m/s	7	8	9	10	11		
1	WT6000	93	97	99	100	104	106		
2									
3									

Note:

- 1. PWL denotes Sound Power Level in dB re 10^{-12} Watt
- 2. Noise emissions of a wind farm are represented by a sum of PWL values for individual wind turbine units.

Wind Turbine Noise Impact Assessment Summary Table

Identify all receptors (add rows for additional Points of Reception)

											Sound	l Lev	el Lir	nit (d	BA)		
Point of Reception ID	Receptor Description	Distance to closestWind	Calculated Sound Pressure Level at Receptor (dBA) at selected Wind Speed in m/s					at selected Wind Speed in m/s					Applicable Background Sound Level		Compliance with Limit		
ID	Turbine (m)		6 or <	7	8	9	10	11	6 or <	7	8	9	10	11	NPC 205	NPC 232	(Yes/No)
R1	Residence to East	100	43	44	<u>48</u>	<u>50</u>	<u>54</u>	<u>56</u>	45	45	45	49	51	53	46		No
R2	Apt. Bldg. to South	150	40	42	45	47	51	<u>53</u>	45	45	45	49	51	53	51		No
R3	Nursing Home to West	200	37	39	42	44	48	50	45	45	45	49	51	53	47		Yes
R4	Residence to North	260	35	38	40	42	46	48	40	43	45	49	51	53		44	Yes

Note: Values in the table which are <u>underlined/bold</u> denote an excess over the applicable limit.

APPENDIX B

NPC - 232 - Sound Level Limits for Stationary Sources in Class 3 Areas (Rural)

SOUND LEVEL LIMITS FOR

STATIONARY SOURCES IN

CLASS 3 AREAS (RURAL)

PUBLICATION NPC-232

OCTOBER 1995

Ministry of the Environment

Cette publication technique n`est disponible qu`en anglais.

Copyright: Queen's Printer for Ontario, 1995 This publication may be reproduced for noncommercial purposes with appropriate attribution.

> ISBN 0-7778-4921-6 PIBS 3405E

Sound Level Limits for Stationary Sources in Class 3 Areas (Rural) Publication NPC-232 October 1995

This Publication establishes sound level limits for stationary sources such as industrial and commercial establishments or ancillary transportation facilities, affecting points of reception in Class 3 Areas (Rural). It replaces Publication NPC-132 "Guidelines for Noise Control in Rural Areas" of the "Model Municipal Noise Control By-Law, Final Report, August 1978".

TABLE OF CONTENTS

1.	SCOPE 1 -
2.	REFERENCES 2 -
3.	DEFINITIONS
4.	ESTABLISHMENT OF LIMITS - OBJECTIVE
5.	BACKGROUND SOUND LEVELS OF THE NATURAL ENVIRONMENT 3 -
6.	SOUND LEVELS DUE TO STATIONARY SOURCES- 3 -(1)Complaint Investigation of Stationary Sources- 3 -(2)Approval of Stationary Sources- 4 -
7.	PROCEDURES
8.	SOUND LEVEL LIMITS - GENERAL
9.	SOUND LEVEL LIMITS - SPECIFIC IMPULSIVE SOUNDS
10.	SOUND LEVEL LIMITS - PEST CONTROL DEVICES
11.	PROHIBITION - PEST CONTROL DEVICES
12.	PRE-EMPTION
13.	EXCLUSION
A.1.	GENERAL A 1 -
A.2.	APPLICATION A 1 -
A.3.	STATIONARY SOURCES- A 2 -(1)Included Sources- A 2 -(2)Excluded Sources- A 2 -
A.4.	PREDICTABLE WORST CASE IMPACT A 3 -
A.5.	DEFINITIONS

1. SCOPE

This Publication establishes sound level limits for stationary sources of sound such as industrial and commercial establishments or ancillary transportation facilities, affecting points of reception in Class 3 Areas (Rural). The limits apply to noise complaint investigations carried out in order to determine potential violation of Section 14 of the Environmental Protection Act. The limits also apply to the assessment of planned stationary sources of sound in compliance with Section 9 of the Environmental Protection Act, and under the provisions of the Aggregate Resources Act and the Environmental Assessment Act.

MINISTRY OF THE ENVIRONMENT

This Publication does not address sound and vibration produced by blasting; blasting in quarries and surface mines is considered in Reference [7].

The Publication includes an Annex, which provides additional details, definitions and rationale for the sound level limits.

2. REFERENCES

Reference is made to the following publications:

- [1] NPC-101 Technical Definitions
- [2] NPC-102 Instrumentation
- [3] NPC-103 Procedures
- [4] NPC-104 Sound Level Adjustments
- [5] NPC-205 Sound Level Limits for Stationary Sources in Class 1 & 2 Areas (Urban)
- [6] NPC-206 Sound Levels due to Road Traffic
- [7] NPC-119 Blasting
- [8] NPC-216 Residential Air Conditioning Devices
- [10] NPC-233 Information to be Submitted for Approval of Stationary Sources of Sound
- [12] ORNAMENT, Ontario Road Noise Analysis Method for Environment and Transportation, Technical Document, Ontario Ministry of the Environment, ISBN 0-7729-6376, 1989

References [1] to [4] and [7] can be found in the Model Municipal Noise Control By-Law, Ontario Ministry of the Environment, Final Report, August 1978.

2. DEFINITIONS

"Ambient sound level"

means Background sound level.

"Background sound level"

is the sound level that is present in the environment, produced by noise sources other than the source under impact assessment. Highly intrusive short duration noise caused by a source such as an aircraft fly-over or a train pass-by is excluded from the determination of the background sound level.

"Class 1 Area"

means an area with an acoustical environment typical of a major population centre, where the background noise is dominated by the urban hum.

"Class 2 Area"

means an area with an acoustical environment that has qualities representative of both Class 1 and Class 3 Areas, and in which a low ambient sound level, normally occurring only between 23:00 and 07:00 hours in Class 1 Areas, will typically be realized as early as 19:00 hours.

Other characteristics which may indicate the presence of a Class 2 Area include:

- absence of urban hum between 19:00 and 23:00 hours;
- evening background sound level defined by natural environment and infrequent human activity; and
- no clearly audible sound from stationary sources other than from those under impact assessment.

"Class 3 Area"

means a rural area with an acoustical environment that is dominated by natural sounds having little or no road traffic, such as the following:

- a small community with less than 1000 population;
- agricultural area;
- a rural recreational area such as a cottage or a resort area; or
- a wilderness area.

Other technical terms are defined in Reference [1] and in the Annex to Publication NPC-232.

3. ESTABLISHMENT OF LIMITS - OBJECTIVE

The sound level limit at a point of reception must be established based on the principle of "predictable worst case" noise impact. In general, the limit is given by the background sound level at the point of reception. The sound level limit must represent the minimum background sound level that occurs or is likely to occur during the operation of the stationary source under impact assessment.

4. BACKGROUND SOUND LEVELS OF THE NATURAL ENVIRONMENT

The One Hour Equivalent Sound Level (L_{eq}) and/or the One Hour Ninetieth Percentile Sound Level (L_{90}) of the natural environment shall be obtained by measurement performed in accordance with Section 7. The results of the measurements must not be affected by the sound of the stationary source under impact assessment.

The time interval between the background sound level measurement and the measurement of the sound level produced by the stationary source under impact assessment should be minimized as much as possible. Preferably, the two measurements should be carried out within one hour of each other.

5. SOUND LEVELS DUE TO STATIONARY SOURCES

(1) Complaint Investigation of Stationary Sources

The One Hour Equivalent Sound Level (L_{eq}) and/or the Logarithmic Mean Impulse Sound Level (L_{LM}) produced by the stationary sources shall be obtained by measurement performed in accordance with Section 7.

(2) Approval of Stationary Sources

The One Hour Equivalent Sound Level (L_{eq}) and/or the Logarithmic Mean Impulse Sound Level (L_{LM}) produced by the stationary sources shall be obtained by measurement or prediction. The estimation of the L_{eq} and/or L_{LM} of the stationary source under impact assessment shall reflect the principle of "predictable worst case" noise impact. The "predictable worst case" noise impact occurs during the hour when the difference between the predicted sound level produced by the stationary source and the background sound level of the natural environment is at a maximum.

6. PROCEDURES

All sound level measurements of the One Hour Equivalent Sound Level (L_{eq}) and the Logarithmic Mean Impulse Sound Level (L_{LM}) shall be made in accordance with Reference [3].

All sound level measurements of the One Hour Ninetieth Percentile Sound Level (L_{90}) shall be made using a Sound Level Meter capable of measuring percentile sound levels. The meter shall meet the applicable requirements for an Integrating Sound Level Meter of Reference [2]. The measurements shall be carried out following procedures for the measurement of varying sound described in Reference [3].

Sound from existing adjacent stationary sources may be included in the determination of the background hourly sound levels L_{eq} and L_{90} , if such stationary sources are not under consideration for noise abatement by the Municipality or the Ministry of Environment and Energy.

7. SOUND LEVEL LIMITS - GENERAL

- (1) For impulsive sound, other than Quasi-Steady Impulsive Sound, from a stationary source, the sound level limit at a point of reception within 30 m of a dwelling or a camping area, expressed in terms of the Logarithmic Mean Impulse Sound Level (L_{LM}), is the lower of:
 - the background One Hour Equivalent Sound Level (L_{eq}) obtained pursuant to Section 5; and
 - the background One Hour Ninetieth Percentile Sound Level (L_{90}) plus 15 dB, i.e. L_{90} + 15 dB, obtained pursuant to Section 5.
- (2) For sound from a stationary source, including Quasi-Steady Impulsive Sound but not including other impulsive sound, the sound level limit at a point of reception within 30 m of a dwelling or a camping area, expressed in terms of the One Hour Equivalent Sound Level (L_{eq}), is the lower of:
 - the background One Hour Equivalent Sound Level (L_{eg}) obtained pursuant to Section 5; and
 - the background One Hour Ninetieth Percentile Sound Level (L₉₀) plus 10 dB, i.e. L₉₀ + 10 dB, obtained pursuant to Section 5.

8. SOUND LEVEL LIMITS - SPECIFIC IMPULSIVE SOUNDS

- (1) For impulsive sound, other than Quasi-Steady Impulsive Sound, from a stationary source which is an industrial metal working operation (including but not limited to forging, hammering, punching, stamping, cutting, forming and moulding), the sound level limit at a point of reception within 30 m of a dwelling or a camping area, expressed in terms of the Logarithmic Mean Impulse Sound Level (L_{LM}), is 60 dBAI, if the stationary source were operating before January 1, 1980, and otherwise is 50 dBAI.
- (2) For impulsive sound, other than Quasi-Steady Impulsive Sound, from a stationary source which is the discharge of firearms on the premises of a licensed gun club, the sound level limit at a point of reception within 30 m of a dwelling or a camping area, expressed in terms of the Logarithmic Mean Impulse Sound Level (L_{LM}), is:

MINISTRY OF THE ENVIRONMENT

- 70 dBAI if the gun club were operating before January 1, 1980; or
- 50 dBAI if the gun club began to operate after January 1, 1980; or
- the L_{LM} prior to expansion, alteration or conversion.
- (3) For impulsive sound, other than Quasi-Steady Impulsive Sound, from a stationary source which is not a blasting operation in a surface mine or quarry, characterized by impulses which are so infrequent that they cannot normally be measured using the procedure for frequent impulses of Reference [3], the sound level limit at a point of reception within 30 m of a dwelling or a camping area, expressed in terms of the impulse sound level, is 100 dBAI.

9. SOUND LEVEL LIMITS - PEST CONTROL DEVICES

- (1) For impulsive sound, other than Quasi-Steady Impulsive Sound, from a pest control device employed solely to protect growing crops, the sound level limit at a point of reception within 30 m of a dwelling or a camping area, expressed in terms of the Logarithmic Mean Impulse Sound Level (L_{LM}), is 70 dBAI.
- (2) For sound, including Quasi-Steady Impulsive Sound but not including other impulsive sound, from a pest control device employed solely to protect growing crops, the sound level limit at a point of reception within 30 m of a dwelling or a camping area, expressed in terms of the One Hour Equivalent Sound Level (L_{eo}), is 60 dBA.

10. PROHIBITION - PEST CONTROL DEVICES

The operation of a pest control device employed solely to protect growing crops is prohibited during the hours of darkness, sunset to sunrise.

11. PRE-EMPTION

The least restrictive sound level limit of Sections 8, 9 and 10 applies.

12. EXCLUSION

No restrictions apply to any stationary source resulting in a One Hour Equivalent Sound Level (L_{eq}) or a Logarithmic Mean Impulse Sound Level (L_{LM}), at a point of reception within 30 m of a dwelling or a camping area, lower than the minimum values for that time period, as specified in Table 232-1.

Time of Day	One Hour $\rm L_{\rm eq}$ (dBA) or $\rm L_{\rm LM}$ (dBAI)
0700 - 1900	45
1900 - 2300	40
2300 - 0700	40

 TABLE 232-1

 Minimum Values of One Hour Leq or LLM by Time of Day

May 21, 1999

MINISTRY OF THE ENVIRONMENT

Annex to Publication NPC-232 Sound Level Limits for Stationary Sources in Class 3 Areas (Rural) October 1995

A.1. GENERAL

The definitions in Publication NPC-232 of a Class 3 Area (Rural), as well as Class 1 and 2 Areas (Urban), provide a broad characterization of the areas including a range of localities. In formulating the definitions, consideration was given to the fact that the terms "rural" and "urban" embody a conception of distinct types of dwelling habitat.

On one hand, the term "urban" traditionally conveys a distinct image of a concentration of people and activities in a predominantly man-made environment dominated by road traffic noise, making intensive use of the space available. On the other hand, the term "rural" brings to mind a sparse distribution of people and activities in a predominantly natural environment using land extensively (farming) or not at all (wilderness areas). In between these two categories fall areas that exhibit characteristics of both "urban" and "rural" areas, particularly at different times of the day.

It is, however, evident that not all of the environment will fit neatly into one of these categories. The predominance of road traffic in the area is a significant factor in determining rurality. For example, a residential property in an isolated recreational area, but close to a major roadway, would not be considered to be located in a Class 3 Area.

While examples of a rural setting, described in Publication NPC-232 provide some general guidelines, any classification of a point of reception as being in a Class 1, 2 or 3 Area should be made on an individual basis. The classification can, and should, utilize normally available information on zoning by-laws, official plans, and other policy statements, as well as the future character of the particular piece of land in question and the land in its vicinity.

The standard of environmental noise acceptability for a stationary source is, in general, expressed as the difference between the noise from the source and the background noise. In rural areas, this background noise is formed by natural sounds rather than man-made sounds.

The background noise may also include contributions from existing stationary sources adjacent to the stationary source under impact assessment. Contributions of these secondary stationary noise sources are considered to be a part of the existing noise environment, and may be included in the measurement of the background sound levels, provided that they are not under consideration for noise abatement by the Municipality or the Ministry of Environment and Energy.

In Class 1 and 2 Areas where the acoustical environment is governed primarily by road traffic, the background noise is best described by the energy equivalent sound level (L_{eq}). However, the background noise in Class 3 Areas is often better described in terms of the ninetieth percentile sound level (L_{g0}). Therefore, Publication NPC-232 has established both the L_{g0} as well as the L_{eq} of the background as the limits against which the intrusion of the source, measured in terms of the L_{eq} , is assessed.

A.2. APPLICATION

Sound level limits contained in this Publication do not apply to non-stationary noise sources nor to any equipment, apparatus or device used in agriculture for food crop seeding, chemical spraying or harvesting. In addition, several specific noise sources have been addressed in separate Publications. Limits for residential air conditioners are contained in Publication NPC-216 - Residential Air Conditioning Devices, Reference [8], and the limits for blasting operations in quarries and surface mines are contained in Publication NPC-119 - Blasting, Reference [7].

A.3. STATIONARY SOURCES

The objective of the definition of a stationary source of sound is to address sources such as industrial and commercial establishments or ancillary transportation facilities. In order to further clarify the scope of the definition, the following list identifies examples of installations, equipment, activities or facilities that are included and those that are excluded as stationary sources.

(1) Included Sources

Individual stationary sources such as:

Heating, ventilating and air conditioning (HVAC) equipment; Rotating machinery; Impacting mechanical sources; Generators; Burners; Grain dryers.

Facilities, usually comprising many sources of sound. In this case, the stationary source is understood to encompass all the activities taking place within the property boundary of the facility. The following are examples of such facilities:

Industrial facilities; Commercial facilities; Ancillary transportation facilities; Aggregate extraction facilities; Warehousing facilities; Maintenance and repair facilities; Snow disposal sites; Routine loading and unloading facilities (supermarkets, assembly plants, etc.).

Other sources such as:

Car washes; Race tracks; Firearm Ranges.

(2) Excluded Sources

Specific sources or facilities:

Construction activities;

Transportation corridors, i.e. roadways and railways;

Residential air conditioning devices including air conditioners and heat pumps; Gas stations;

Gas stations, Auditory warning dovices

Auditory warning devices required or authorized by law or in accordance with good safety practices; Occasional movement of vehicles on the property such as infrequent delivery of goods to convenience stores, fast food restaurants, etc.

Other noise sources, normally addressed in a qualitative manner in municipal noise by-laws:

The operation of auditory signalling devices, including but not limited to the ringing of bells or gongs and the blowing of horns or sirens or whistles, or the production, reproduction or amplification of any similar sounds by electronic means;

Noise produced by animals kept as domestic pets such as dogs barking;

Tools and devices used by occupants for domestic purposes such as domestic power tools, radios and televisions, etc., or activities associated with domestic situations such as domestic quarrels, noisy parties, etc;

MINISTRY OF THE ENVIRONMENT

Noise resulting from gathering of people at facilities such as restaurants and parks.

Activities related to essential service and maintenance of public facilities such as but not limited to roadways, parks and sewers, including snow removal, road cleaning, road repair and maintenance, lawn mowing and maintenance, sewage removal, garbage collection, etc.

A.4. PREDICTABLE WORST CASE IMPACT

The assessment of noise impact requires the determination of the "predictable worst case" impact. The "predictable worst case" impact assessment should establish the largest noise excess produced by the source over the applicable limit. The assessment should reflect a planned and predictable mode of operation of the stationary source.

It is important to emphasize that the "predictable worst case" impact does not necessarily mean that the sound level of the source is highest; it means that the excess over the limit is largest. For example, the excess over the applicable limit at night may be larger even if the day-time sound level produced by the source is higher.

A.5. DEFINITIONS

In the interpretation of Publication NPC-232, the following definitions are of particular relevance:

- Ancillary Transportation Facilities

"Ancillary transportation facilities" mean subsidiary locations where operations and activities associated with the housing of transportation equipment (or personnel) take place. Examples of ancillary transportation facilities include, but are not limited to, substations, vehicle storage and maintenance facilities, fans, fan and vent shafts, mechanical equipment plants, emergency services buildings, etc;

- <u>Construction</u>

"Construction" includes erection, alteration, repair, dismantling, demolition, structural maintenance, painting, moving, land clearing, earth moving, grading, excavating, the laying of pipe and conduit whether above or below ground level, street and highway building, concreting, equipment installation and alteration and the structural installation of construction components and materials in any form or for any purpose, and includes any work in connection therewith; "construction" excludes activities associated with the operation at waste and snow disposal sites;

<u>Construction Equipment</u>

"Construction equipment" means any equipment or device designed and intended for use in construction, or material handling including but not limited to, air compressors, pile drivers, pneumatic or hydraulic tools, bulldozers, tractors, excavators, trenchers, cranes, derricks, loaders, scrapers, pavers, generators, off-highway haulers or trucks, ditchers, compactors and rollers, pumps, concrete mixers, graders, or other material handling equipment;

- <u>Conveyance</u>

"Conveyance" includes a vehicle and any other device employed to transport a person or persons or goods from place to place but does not include any such device or vehicle if operated only within the premises of a person;

- <u>Highway</u>

"Highway" includes a common and public highway, street, avenue, parkway, driveway, square, place, bridge, viaduct or trestle designed and intended for, or used by, the general public for the passage of vehicles;

MINISTRY OF THE ENVIRONMENT

- Motor Vehicle

"Motor vehicle" includes an automobile, motorcycle, and any other vehicle propelled or driven otherwise than by muscular power, but does not include the cars of diesel, electric or steam railways, or other motor vehicles running only upon rails, or a motorized snow vehicle, traction engine, farm tractor, self-propelled implement of husbandry or road-building machine within the meaning of the Highway Traffic Act;

- <u>Motorized Conveyance</u> "Motorized conveyance" means a conveyance propelled or driven otherwise than by muscular, gravitational or wind power;

 <u>Noise</u> "Noise" means unwanted sound:

- Point of Reception - Class 3 Area

"Point of reception - Class 3 Area" means a point on the premises of a person within 30 m of a dwelling or a camping area, where sound or vibration originating from other than those premises is received.

For the purpose of approval of new sources, including verifying compliance with Section 9 of the Environmental Protection Act, the point of reception may be located on any of the following existing or zoned for future use premises: permanent or seasonal residences, hotels/motels, nursing/retirement homes, rental residences, hospitals, camp grounds, and noise sensitive buildings such as schools and places of worship.

For equipment/facilities proposed on premises such as nursing/retirement homes, rental residences, hospitals, and schools, the point of reception may be located on the same premises;

- <u>Stationary Source</u>

"Stationary source" means a source of sound which does not normally move from place to place and includes the premises of a person as one stationary source, unless the dominant source of sound on those premises is construction or a conveyance;

- Urban Hum

means aggregate sound of many unidentifiable, mostly road traffic related noise sources.

May 21, 1999

ISBN 0-7778-4921-6 PIBS 3405E

APPENDIX C

NPC - 205 - Sound Level Limits for Stationary Sources in Class 1 & 2 Areas (Urban)

SOUND LEVEL LIMITS FOR STATIONARY SOURCES IN CLASS 1 & 2 AREAS (URBAN)

PUBLICATION NPC-205

OCTOBER 1995

Ministry of the Environment

Cette publication technique n`est disponible qu`en anglais.

Copyright: Queen's Printer for Ontario, 1995 This publication may be reproduced for noncommercial purposes with appropriate attribution.

> ISBN 0-7778-4922-4 PIBS 3406E

Sound Level Limits for Stationary Sources in Class 1 & 2 Areas (Urban) Publication NPC-205

October 1995

This Publication establishes sound level limits for stationary sources such as industrial and commercial establishments or ancillary transportation facilities, affecting points of reception in Class 1 and 2 Areas (Urban). It replaces Publication NPC-105 "Stationary Sources" of the "Model Municipal Noise Control By-Law, Final Report, August 1978".

TABLE OF CONTENTS

1.	SCOPE 1 -
2.	REFERENCES
3.	TECHNICAL DEFINITIONS
4.	ESTABLISHMENT OF LIMITS - OBJECTIVE
5.	BACKGROUND SOUND LEVELS
6.	SOUND LEVELS DUE TO STATIONARY SOURCES- 3 -(1)Complaint Investigation of Stationary Sources- 3 -(2)Approval of Stationary Sources- 3 -
7.	PROCEDURES 4 -
8.	SOUND LEVEL LIMITS - GENERAL
9.	SOUND LEVEL LIMITS - SPECIFIC IMPULSIVE SOUNDS
10.	SOUND LEVEL LIMITS - PEST CONTROL DEVICES
11.	PROHIBITION - PEST CONTROL DEVICES
12.	PRE-EMPTION
13.	EXCLUSION
A.1.	GENERAL A 1 -
A.2.	APPLICATION A 1 -
A.3.	STATIONARY SOURCES - A 1 - (1) Included Sources - A 1 - (2) Excluded Sources - A 2 -
A.4.	PREDICTABLE WORST CASE IMPACT A 2 -
A.5.	DEFINITIONS

1. SCOPE

This Publication establishes sound level limits for stationary sources such as industrial and commercial establishments or ancillary transportation facilities, affecting points of reception in Class 1 and 2 Areas (Urban). The limits apply to noise complaint investigations carried out in order to determine potential violation of Section 14 of the Environmental Protection Act. The limits also apply to the assessment of planned stationary sources of sound in compliance with Section 9 of the Environmental Protection Act, and under the provisions of the Aggregate Resources Act and the Environmental Assessment Act.

This Publication does not address sound and vibration produced by blasting; blasting in quarries and surface mines is considered in Reference [7].

The Publication includes an Annex, which provides additional details, definitions and rationale for the sound level limits.

2. REFERENCES

Reference is made to the following publications:

- [1] NPC-101 Technical Definitions
- [2] NPC-102 Instrumentation
- [3] NPC-103 Procedures
- [4] NPC-104 Sound Level Adjustments
- [6] NPC-206 Sound Levels due to Road Traffic
- [7] NPC-119 Blasting
- [8] NPC-216 Residential Air Conditioning Devices
- [9] NPC-232 Sound Level Limits for Stationary Sources in Class 3 Areas (Rural)
- [10] NPC-233 Information to be Submitted for Approval of Stationary Sources of Sound
- [12] ORNAMENT, Ontario Road Noise Analysis Method for Environment and Transportation, Technical Document, Ontario Ministry of the Environment, ISBN 0-7729-6376, 1989

References [1] to [4] and [7] can be found in the Model Municipal Noise Control By-Law, Ontario Ministry of the Environment, Final Report, August 1978.

3. TECHNICAL DEFINITIONS

"Ambient sound level"

means Background sound level.

"Background sound level"

is the sound level that is present in the environment, produced by noise sources other than the source under impact assessment. Highly intrusive short duration noise caused by a source such as an aircraft fly-over or a train pass-by is excluded from the determination of the background sound level.

"Class 1 Area"

means an area with an acoustical environment typical of a major population centre, where the background noise is dominated by the urban hum.

"Class 2 Area"

means an area with an acoustical environment that has qualities representative of both Class 1 and Class 3 Areas, and in which a low ambient sound level, normally occurring only between 23:00 and 07:00 hours in Class 1 Areas, will typically be realized as early as 19:00 hours.

Other characteristics which may indicate the presence of a Class 2 Area include:

- absence of urban hum between 19:00 and 23:00 hours;
- evening background sound level defined by natural environment and infrequent human activity; and
- no clearly audible sound from stationary sources other than from those under impact assessment.

"Class 3 Area"

means a rural area with an acoustical environment that is dominated by natural sounds having little or no road traffic, such as the following:

- a small community with less than 1000 population;
- agricultural area;
- a rural recreational area such as a cottage or a resort area; or
- a wilderness area.

Other technical terms are defined in Reference [1] and in the Annex to Publication NPC-205.

4. ESTABLISHMENT OF LIMITS - OBJECTIVE

The sound level limit at a point of reception must be established based on the principle of "predictable worst case" noise impact. In general, the limit is given by the background sound level at the point of reception. The sound level limit must represent the minimum background sound level that occurs or is likely to occur during the operation of the stationary source under impact assessment.

5. BACKGROUND SOUND LEVELS

The time interval between the background sound level measurement and the measurement of the sound level produced by the stationary source under impact assessment should be minimized as much as possible. Preferably, the two measurements should be carried out within one hour of each other.

6. SOUND LEVELS DUE TO STATIONARY SOURCES

(1) Complaint Investigation of Stationary Sources

The One Hour Equivalent Sound Level (L_{eq}) and/or the Logarithmic Mean Impulse Sound Level (L_{LM}) produced by the stationary sources shall be obtained by measurement performed in accordance with Section 7.

(2) Approval of Stationary Sources

The One Hour Equivalent Sound Level (L_{eq}) and/or the Logarithmic Mean Impulse Sound Level (L_{LM}) produced by the stationary sources shall be obtained by measurement or prediction. The estimation of the L_{eq} and/or L_{LM} of the stationary source under impact assessment shall reflect the principle of "predictable worst case" noise impact. The "predictable worst case" noise impact occurs during the hour when the difference between the predicted sound level produced by the stationary source and the background sound level of the natural environment is at a maximum.

7. PROCEDURES

All sound level measurements and calculations shall be made in accordance with References [3], [6]and [12].

Sound from existing adjacent stationary sources may be included in the determination of the background One Hour Equivalent Sound Level (L_{eq}) if such stationary sources of sound are not under consideration for noise abatement by the Municipality or the Ministry of Environment and Energy.

8. SOUND LEVEL LIMITS - GENERAL

- (1) For impulsive sound, other than Quasi-Steady Impulsive Sound, from a stationary source, the sound level limit expressed in terms of the Logarithmic Mean Impulse Sound Level (L_{LM}) is the background One Hour Equivalent Sound Level (L_{eq}) typically caused by road traffic as obtained pursuant to Section 6 for that point of reception.
- (2) For sound from a stationary source, including Quasi-Steady Impulsive Sound but not including other impulsive sound, the sound level limit expressed in terms of the One Hour Equivalent Sound Level (L_{eq}) is the background One Hour Equivalent Sound Level (L_{eq}) typically caused by road traffic as obtained pursuant to Section 6 for that point of reception.

9. SOUND LEVEL LIMITS - SPECIFIC IMPULSIVE SOUNDS

- (1) For impulsive sound, other than Quasi-Steady Impulsive Sound, from a stationary source which is an industrial metal working operation (including but not limited to forging, hammering, punching, stamping, cutting, forming and moulding), the sound level limit at a point of reception expressed in terms of the Logarithmic Mean Impulse Sound Level (L_{LM}) is 60 dBAI, if the stationary source were operating before January 1, 1980, and otherwise is 50 dBAI.
- (2) For impulsive sound, other than Quasi-Steady Impulsive Sound, from a stationary source which is the discharge of firearms on the premises of a licensed gun club, the sound level limit at a point of reception expressed in terms of the Logarithmic Mean Impulse Sound Level (L_{LM}) is:
 - 70 dBAI if the gun club were operating before January 1, 1980; or
 - 50 dBAI if the gun club began to operate after January 1, 1980; or
 - the L_{LM} prior to expansion, alteration or conversion.
- (3) For impulsive sound, other than Quasi-Steady Impulsive Sound, from a stationary source which is not a blasting operation in a surface mine or quarry, characterized by impulses which are so infrequent that they cannot normally be measured using the procedure for frequent impulses of Reference [3] the sound level limit at a point of reception expressed in terms of the impulse sound level is 100 dBAI.

10. SOUND LEVEL LIMITS - PEST CONTROL DEVICES

- (1) For impulsive sound, other than Quasi-Steady Impulsive Sound, from a pest control device employed solely to protect growing crops, the sound level limit at a point of reception expressed in terms of the Logarithmic Mean Impulse Sound Level (L_{LM}) is 70 dBAI.
- (2) For sound, including Quasi-Steady Impulsive Sound but not including other impulsive sound, from a pest control device employed solely to protect growing crops, the sound level limit at a point of reception expressed in terms of the One Hour Equivalent Sound Level (L_{eo}) is 60 dBA.

11. PROHIBITION - PEST CONTROL DEVICES

The operation of a pest control device employed solely to protect growing crops outdoors during the hours of darkness, sunset to sunrise, is prohibited.

12. PRE-EMPTION

The least restrictive sound level limit of Sections 8, 9 and 10 applies.

13. EXCLUSION

No restrictions apply to a stationary source resulting in a One Hour Equivalent Sound Level (L_{eq}) or a Logarithmic Mean Impulse Sound Level (L_{LM}) lower than the minimum values for that time period specified in Table 205-1.

TABLE 205-1

Minimum Values of One Hour L_{ea} or L_{LM} by Time of Day

	One Hour L_{eq} (dBA) or L_{LM} (dBAI)					
Time of Day	Class 1 Area	Class 2 Area				
0700 - 1900	50	50				
1900 - 2300	47	45				
2300 - 0700	45	45				

May 21, 1999

MINISTRY OF THE ENVIRONMENT

Annex to Publication NPC-205 Sound Level Limits for Stationary Sources in Class 1 & 2 Areas (Urban) October 1995

A.1. GENERAL

In general, noises are annoying because they are heard over and above the level of the so-called "background" or surrounding environmental noise climate at a particular location. The standard for environmental noise acceptability of stationary sources is therefore expressed as the difference between noise from the source and the background noise.

The background noise is essentially made up of the road traffic noise which creates an "urban hum". It may also include contributions from existing industry or commercial activity adjacent to the stationary source under investigation. Contributions of these secondary noise sources are considered to be a part of urban hum and may be included in the measurements or calculation of the background sound levels, provided that they are not under consideration for noise abatement by the Municipality or the Ministry of Environment and Energy.

The sound level limits specified in Section 8 of Publication NPC-205 represent the general limitation on noise produced by stationary sources. Some noises, however, are annoying no matter where or in what kind of environment they exist. High level impulsive noises represent a special category and, consequently, are restricted by an absolute limitation. Sections 9 and 10 of this Publication provide criteria of acceptability for specific impulsive noise sources.

A.2. APPLICATION

The limits presented in Publication NPC-205 are designed for the control of noise from sources located in industrial, commercial or residential areas. The limits apply to points of reception located in Class 1 and Class 2 Areas.

Sound level limits contained in Publication NPC-205 do not apply to the excluded noise sources listed in Section A.3.(2) and neither do they apply to any equipment, apparatus or device used in agriculture for food crop seeding, chemical spraying or harvesting. In addition, several specific noise sources have been addressed in separate Publications. Limits for residential air conditioners are contained in Publication NPC-216 - Residential Air Conditioning Devices, Reference [8] and the limits for blasting operations in quarries and surface mines are contained in Publication NPC-119 - Blasting, Reference [7].

A.3. STATIONARY SOURCES

The objective of the definition of a stationary source of sound is to address sources such as industrial and commercial establishments or ancillary transportation facilities. In order to further clarify the scope of the definition, the following list identifies examples of installations, equipment, activities or facilities that are included and those that are excluded as stationary sources.

(1) Included Sources

Individual stationary sources such as:

Heating, ventilating and air conditioning (HVAC) equipment; Rotating machinery; Impacting mechanical sources; Generators; Burners; Grain dryers.

MINISTRY OF THE ENVIRONMENT

Facilities, usually comprising many sources of sound. In this case, the stationary source is understood to encompass all the activities taking place within the property boundary of the facility. The following are examples of such facilities:

Industrial facilities; Commercial facilities; Ancillary transportation facilities; Aggregate extraction facilities; Warehousing facilities; Maintenance and repair facilities; Snow disposal sites; Routine loading and unloading facilities (supermarkets, assembly plants, etc.).

Other sources such as: Car washes;

Race tracks; Firearm Ranges.

(2) Excluded Sources

Secific sources or facilities:

Construction activities;

Transportation corridors, i.e. roadways and railways;

Residential air conditioning devices including air conditioners and heat pumps;

Gas stations;

Auditory warning devices required or authorized by law or in accordance with good safety practices; Occasional movement of vehicles on the property such as infrequent delivery of goods to convenience stores, fast food restaurants, etc.

Other noise sources, normally addressed in a qualitative manner in municipal noise by-laws:

The operation of auditory signalling devices, including but not limited to the ringing of bells or gongs and the blowing of horns or sirens or whistles, or the production, reproduction or amplification of any similar sounds by electronic means;

Noise produced by animals kept as domestic pets such as dogs barking;

Tools and devices used by occupants for domestic purposes such as domestic power tools, radios and televisions, etc., or activities associated with domestic situations such as domestic quarrels, noisy parties, etc;

Noise resulting from gathering of people at facilities such as restaurants and parks.

Activities related to essential service and maintenance of public facilities such as but not limited to roadways, parks and sewers, including snow removal, road cleaning, road repair and maintenance, lawn mowing and maintenance, sewage removal, garbage collection, etc.

A.4. PREDICTABLE WORST CASE IMPACT

The assessment of noise impact requires the determination of the "predictable worst case" impact. The "predictable worst case" impact assessment should establish the largest noise excess produced by the source over the applicable limit. The assessment should reflect a planned and predictable mode of operation of the stationary source.

It is important to emphasize that the "predictable worst case" impact does not necessarily mean that the sound level of the source is highest; it means that the excess over the limit is largest. For example, the excess over the applicable limit at night may be larger even if the day-time sound level produced by the source is higher.

A.5. DEFINITIONS

In the interpretation of Publication NPC-205, the following definitions are of particular relevance:

- Ancillary Transportation Facilities

"Ancillary transportation facilities" mean subsidiary locations where operations and activities associated with the housing of transportation equipment (or personnel) take place. Examples of ancillary transportation facilities include, but are not limited to, substations, vehicle storage and maintenance facilities, fans, fan and vent shafts, mechanical equipment plants, emergency services buildings, etc;

- <u>Construction</u>

"Construction" includes erection, alteration, repair, dismantling, demolition, structural maintenance, painting, moving, land clearing, earth moving, grading, excavating, the laying of pipe and conduit whether above or below ground level, street and highway building, concreting, equipment installation and alteration and the structural installation of construction components and materials in any form or for any purpose, and includes any work in connection therewith; "construction" excludes activities associated with the operation at waste and snow disposal sites;

- <u>Construction Equipment</u>

"Construction equipment" means any equipment or device designed and intended for use in construction, or material handling including but not limited to, air compressors, pile drivers, pneumatic or hydraulic tools, bulldozers, tractors, excavators, trenchers, cranes, derricks, loaders, scrapers, pavers, generators, off-highway haulers or trucks, ditchers, compactors and rollers, pumps, concrete mixers, graders, or other material handling equipment;

- <u>Conveyance</u>

"Conveyance" includes a vehicle and any other device employed to transport a person or persons or goods from place to place but does not include any such device or vehicle if operated only within the premises of a person;

- <u>Highway</u>

"Highway" includes a common and public highway, street, avenue, parkway, driveway, square, place, bridge, viaduct or trestle designed and intended for, or used by, the general public for the passage of vehicles;

- Motor Vehicle

"Motor vehicle" includes an automobile, motorcycle, and any other vehicle propelled or driven otherwise than by muscular power, but does not include the cars of diesel, electric or steam railways, or other motor vehicles running only upon rails, or a motorized snow vehicle, traction engine, farm tractor, self-propelled implement of husbandry or road-building machine within the meaning of the Highway Traffic Act;

- <u>Motorized Conveyance</u>

"Motorized conveyance" means a conveyance propelled or driven otherwise than by muscular, gravitational or wind power;

- <u>Noise</u> "Noise" means unwanted sound;
- Point of Reception

"Point of reception" means any point on the premises of a person where sound or vibration originating from other than those premises is received.

MINISTRY OF THE ENVIRONMENT

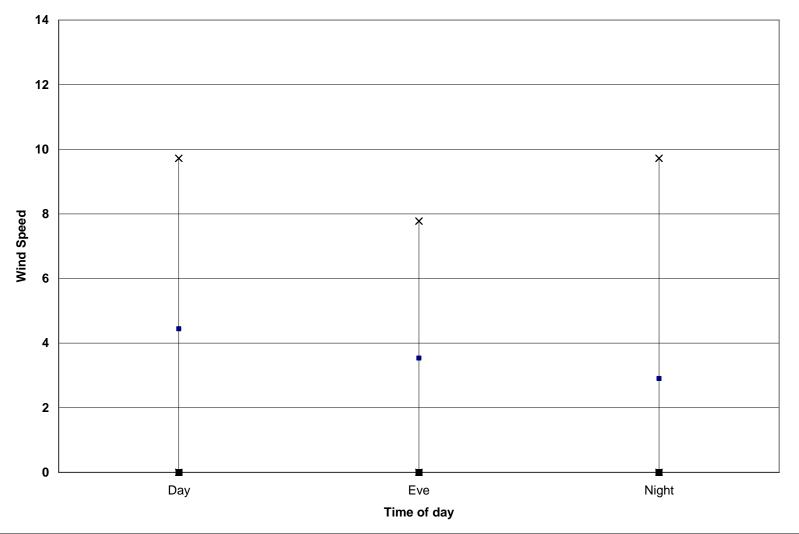
For the purpose of approval of new sources, including verifying compliance with Section 9 of the Environmental Protection Act, the point of reception may be located on any of the following existing or zoned for future use premises: permanent or seasonal residences, hotels/motels, nursing/retirement homes, rental residences, hospitals, camp grounds, and noise sensitive buildings such as schools and places of worship.

For equipment/facilities proposed on premises such as nursing/retirement homes, rental residences, hospitals, and schools, the point of reception may be located on the same premises;

- <u>Stationary Source</u>

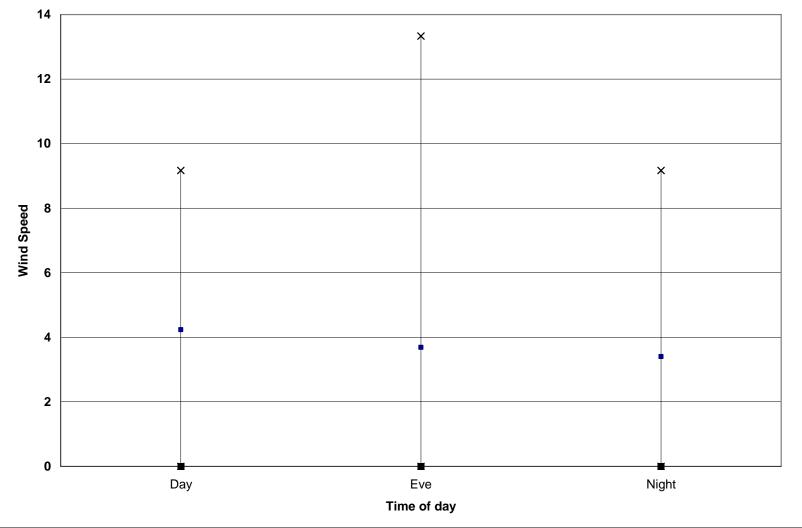
"Stationary source" means a source of sound which does not normally move from place to place and includes the premises of a person as one stationary source, unless the dominant source of sound on those premises is construction or a conveyance;

- Urban Hum

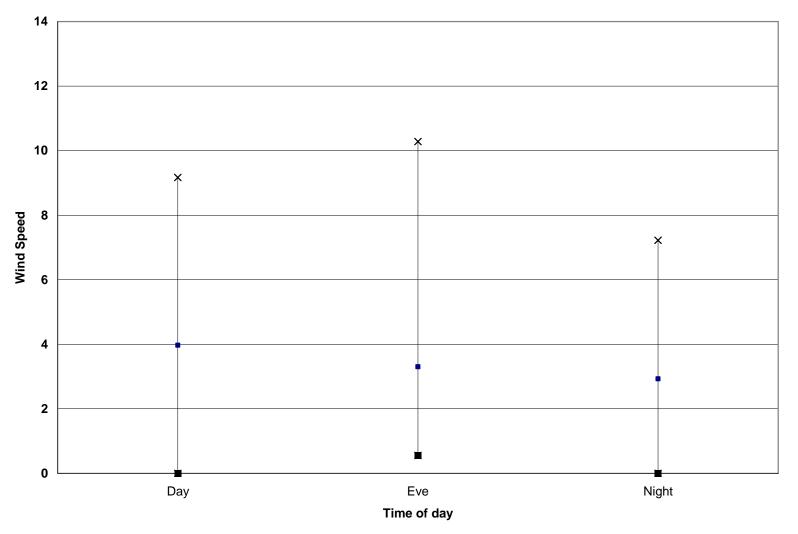

means aggregate sound of many unidentifiable, mostly road traffic related noise sources.

May 21, 1999

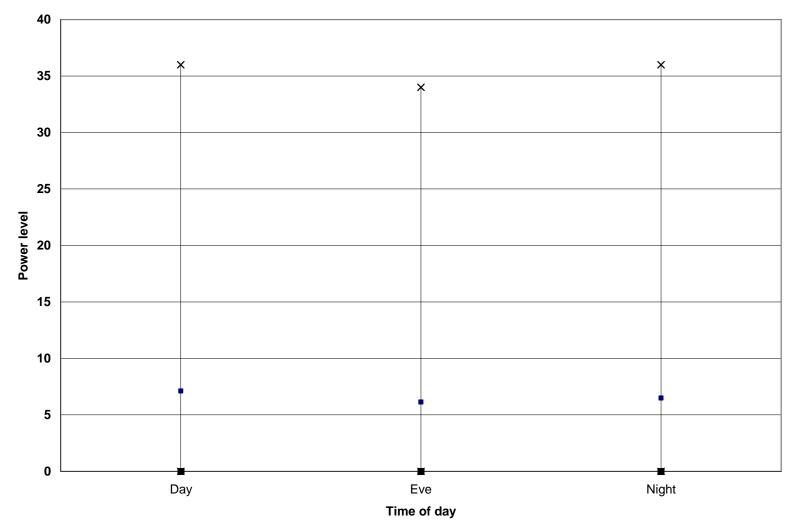
ISBN 0-7778-4922-4 PIBS 3406E


APPENDIX D

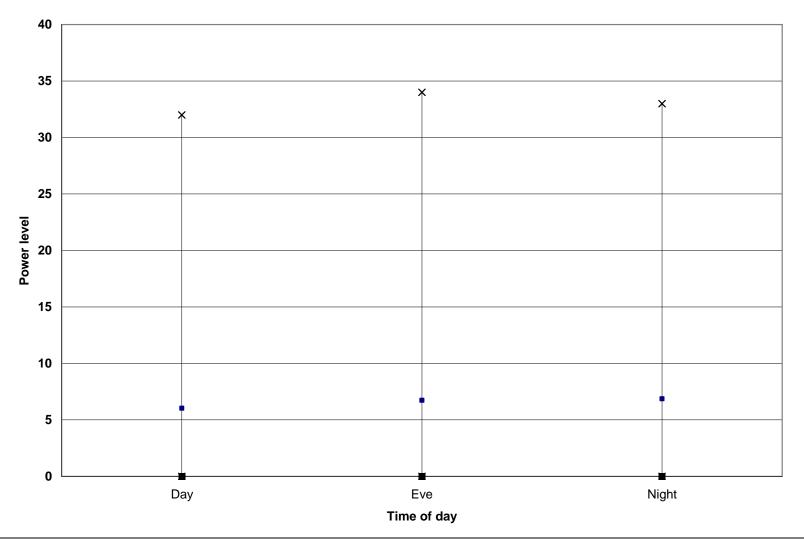
WEATHER DATA (GODERICH STATION) - WIND POWER OUTPUT DATA (KINGSBRIDGE WIND FARMS) FOR JUNE, JULY & AUGUST 2006

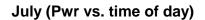

June (Wind Speed vs. time of day)

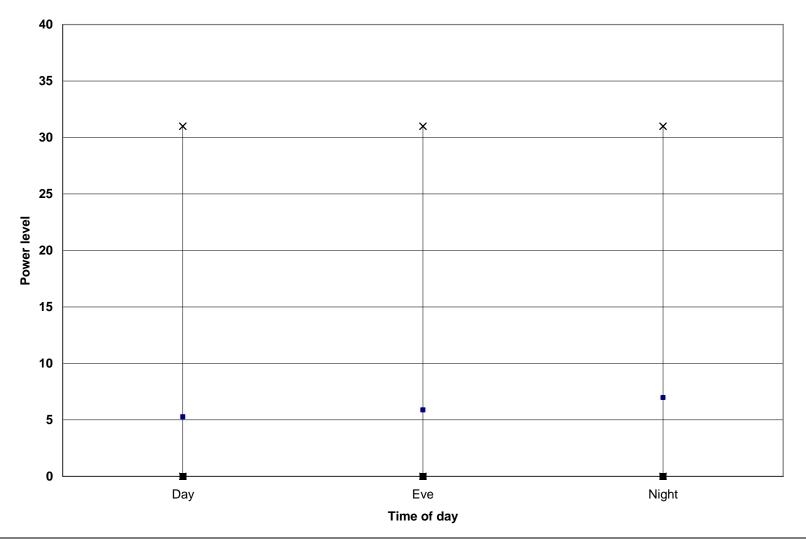
Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues


July (Wind Speed vs. time of day)

Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues

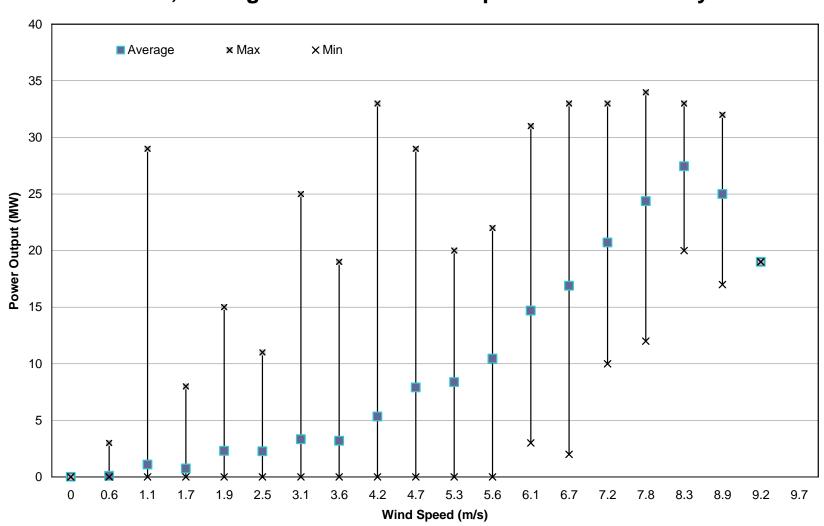

August (wind spd vs. time of day)


Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues

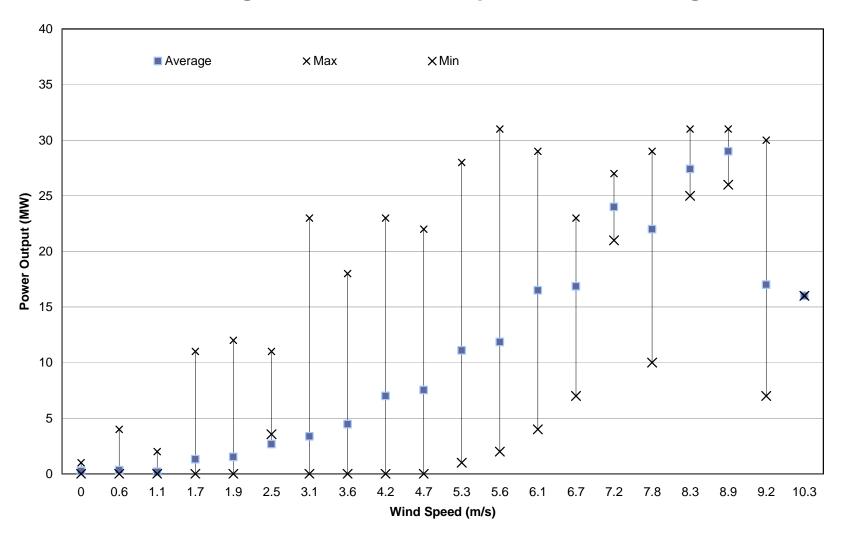


Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues

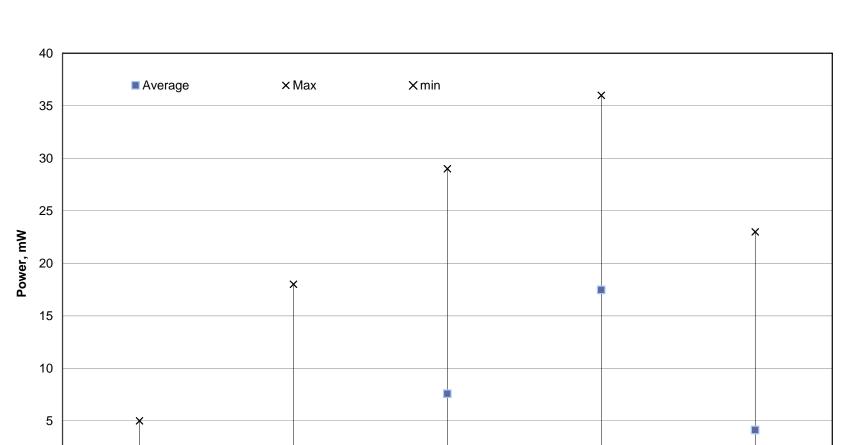
Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues


August (Pwr vs. time of day)

Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues


Power Output vs. Wind Speeds for June

Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues


Max, Average and Min Power output for Month of July

Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues

Max, Average and Min Power output for Month of August

Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues

ж

С

Met Class

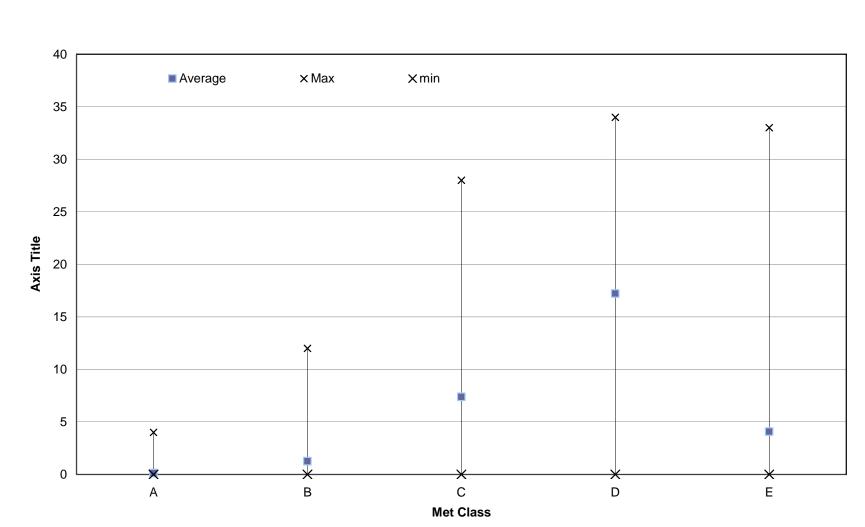
В

ж

D

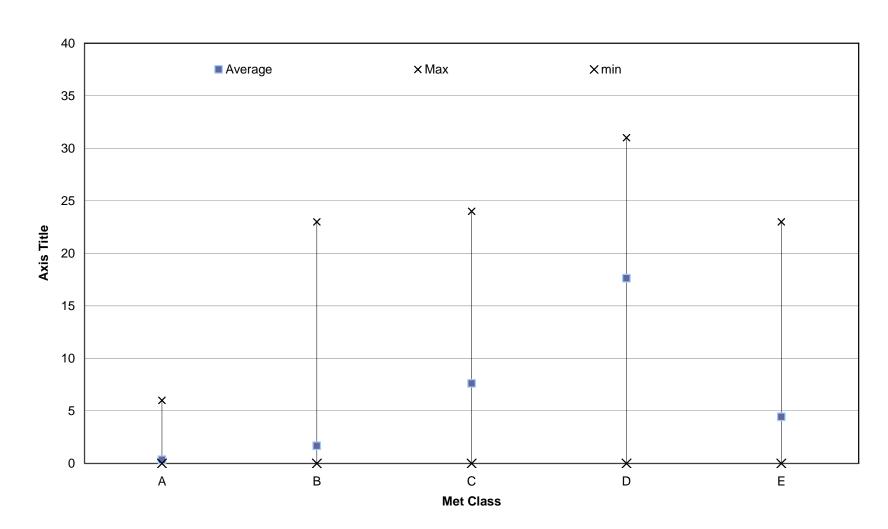
Max, Average and Min Power output for Month of June vs. Class

Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues

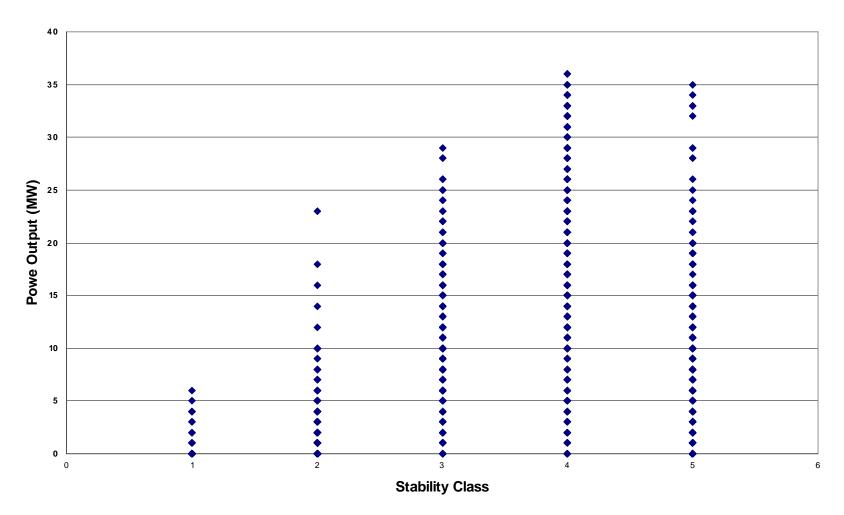

А

0

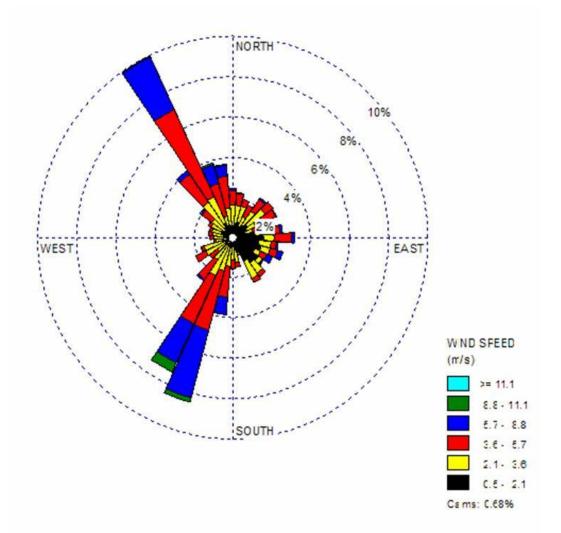
Aiolos Engineering Corporation


ж

Е


Max, Average and Min Power output for Month of July vs. Class

Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues



Max, Average and Min Power output for Month of August vs. Class

Ministry of the Environment, Ontario Wind Turbine Facilities Noise Issues

Power Output vs. Stability class for all three months

Windrose data for Goderich Station for June, July and August 2006 combined.

APPENDIX E

THE BEATING PHENOMENON

One of the main source characteristics that has been attributed to wind turbine noise is they produce swishing sound. Alternate terminologies used for the swishing sound are; beating, thumping, hammer etc. etc. by people being exposed to the wind turbine noise.

G. P. van den berg in his doctoral dissertation, Chapter V-Page 61 (Reference 1) states, "Atmospheric stability is not only relevant for wind turbine sound *levels*, as we saw in he preceding chapter, but also for the *character* of the sound. In conditions where the atmosphere is stable, distant wind turbines can produce a beating or thumping sound that is not apparent in daytime."

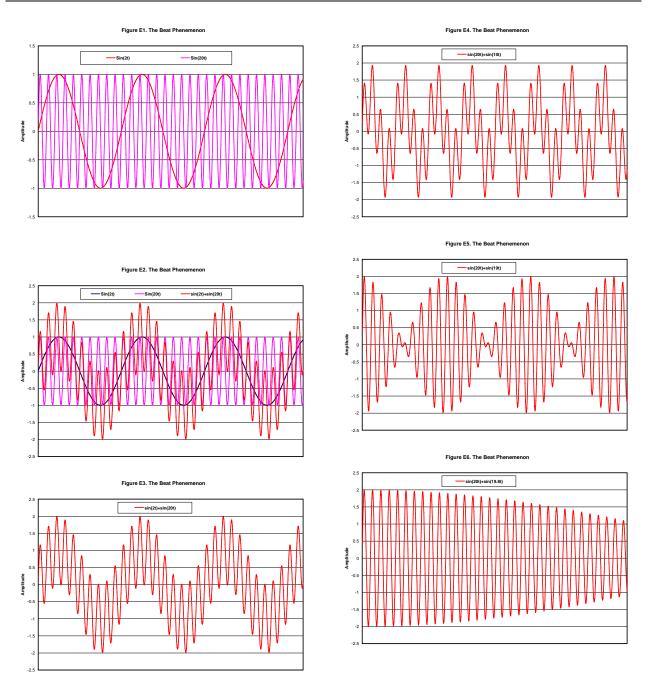
A brief introduction is given in this appendix on the beating phenomenon in acoustics. Some salient points such as 'tuning process in music' as well as 'the subjective reaction' to beating are also highlighted. Clarification for beating in wind turbine noise is also given in this appendix and attempts will also be made to distinguish the 'swishing' phenomenon from 'the beating' phenomenon.

Two references are used extensively while preparing this appendix and are:

- E1) *Fundamentals of Acoustics* by L. E. Kinsler and A. R. Frey, Second Edition, John Wiley & Sons, Inc. 1962. ISBN 0 471 46049 5; and
- E2) Musical Acoustics An Introduction by D. E. Hall, Wadsworth Publishing Co. 1980. ISBN 0-534-00758-9.

E2. Beats

A simple scientific definition of 'Beating' is: "the linear combination of two simple harmonic vibrations of nearly the same frequency results in the *phenomenon* of *beats*."


Without any loss of generality, each of the vibrating wave can be represented by,

$$Wave_1 = A_1 \sin(f_1 t) \quad and \quad Wave_2 = A_2 \sin(f_2 t)$$
(E1)

Where, A_1 and A_2 are amplitudes of the two waves and f_1 and f_2 are the frequencies of the two the two waves. When the two waves are summed together, (i.e.) played together, the resulting vibration can be regarded as approximately simple harmonic, with a frequency that lies somewhere between f_1 and f_2 and the amplitude varying slowly at a frequency of $(f_1 - f_2)$ and we have assumed that f_1 is larger than f_2 . The amplitude of the combined wave will 'wax' and 'wane' between the two limits $(A_1 + A_2)$ and $(A_1 - A_2)$.

In the case of sound waves, the simultaneous sounding of two pure tones of slightly different frequency, the above variation in amplitude results in a rhythmic pulsing of the loudness of the sound which occurs at a rate corresponding to the difference in frequency, $(f_1 - f_2)$, of the two sounds and is known as *beating*. Audible beats are heard whenever two sound of nearly the same frequency strike the ear, and when the frequency of each component is within the audible range. If the frequency difference is small, about 10 or less cycles per sec, the resulting sound waxes and wanes at this rate, with an apparent pitch corresponding to the average frequency. If, on the other hand, their frequency difference is about 200 cycles per sec or more, a combination tone may be observed whose frequency is equal to the difference between that of the two sounds. For intermediate frequency differences, the sound has a rough and discordant character.

A graphical representation of the onset and disappearance of the *beating* phenomenon is highlighted through a series of plots generated from two sounds and are shown in Figures E1 through E7 below.

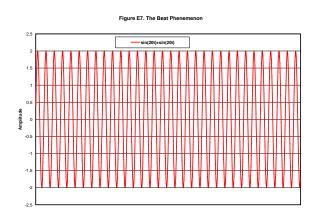


Figure E1 shows two simple sound waves at frequencies of 2 and 20 cycles per second, with their sum shown in Figure E2. One can see frequencies 2 and 20 as well as the beat frequency of 18. The *beat* is not as pronounced since the beat rate is close to the frequency of one of the two sounds as seen in Figure E3. The difference in the two frequencies is 10 in the 'beating' shown in Figure E4. The true 'beating' is not clear in Figure E4 since the beating rate is 10. Figures E5 and E6 show true *beat*. The amplitude is changing between 0 and 1 at a beat rate of 1 and 0.2.

E3. Subjective Response

If the sounds are within audible range, the resulting sound is heard as a single sound whose loudness varies smoothly and rhythmically at the beat rate, and it is said that the sounds *beat* with each other. Actually, the beating phenomenon is used by musical instrument tuners to tune, precisely by observing the beating and adjust for "zero" beat.

The main subjective effect of the 'beating phenomenon' is that the resulting sound appears harsh and discordant. The level of such a response is based on the beat rate as well as the level of the sound. At low levels of the sound, say less than 50 to 60 dB, the only effect is that waxing and waning of the sound.

APPENDIX F

AN ASSESSMENT PROCEDURE

One of the main concerns with the assessment procedures used by different jurisdictions, except New Zealand, is that the effects of meteorological conditions were not appropriately accounted for. Even the New Zealand approach accounts for the effect of wind shear by applying the wind speed data at each site, measured at the hub-height.

It was stated earlier that the current procedures in Ontario are very simple to apply and were similar to other jurisdiction in Europe. The procedure does not require the establishment of ambient sound levels at affected receptor locations before the installation of the wind farm. Neither is there a requirement to incorporate the prevailing meteorological conditions at the proposed wind farm site. Below is an example of one possible assessment process that could address the above concerns. Additional research and analysis would be required in order to develop an appropriate assessment process.

- i. Following the standard procedures used in New Zealand, the ambient sound levels are to be monitored for a pre-set time, say for a month, at salient points of reception. The data should be collected in intervals of 10 minutes so as to be able to evaluate statistically valid analysis;
- ii. The prevailing weather conditions, wind speed, direction, stability class are also measured at the wind farm site for the same duration and time intervals;
- iii. The meteorological data is collected at a minimum of two heights (say 10 m and at hubheight);
- iv. The analysis would involve correlation between wind profiles, determination of shear coefficients (similar to the schemes reported in Reference 22), support for the argument of hub-height wind speeds;
- v. The noise prediction models, for the proposed wind farm, will include the effect of dominant scenarios of meteorological conditions and evaluate the potential range of noise levels;

- vi. One would then assign suitable assessment conditions, based on appropriate statistical parameters, for the range of noise levels that can be expected at the salient points of receptions. Some preliminary concepts of this are:
 - a) Establish the noise levels at all salient receptor locations by applying the current MOE procedures;
 - b) Establish the expected increase in turbine sound power levels, by using the measured Meteorological (MET) data, and re-evaluate the noise levels at all the receptor locations;
 - c) Establish the dominant wind direction from the MET data and its percentage of occurrence. Most of the commercially available propagation models are able to incorporate basic MET data. Using the wind direction data, re-evaluate the noise levels at all salient receptor locations;
 - d) The results of Steps (a) thru' (c) would aid in setting up statistical analysis of noise levels, its variability and the number of affected residents. Average conclusions about the noise impact and potential mitigation methods if necessary can be established.
- vii. Compliance of the wind farm site and potential adverse noise effects, based on acceptable annoyance criterion, can thus be included in the impact analysis to determine the suitability of the wind farm proposal.

The above process is one possible suggestion of the ways in which the current procedures can be revised to incorporate local meteorological conditions at the proposed wind farm sites.

INFRASOUND FROM WIND TURBINES - FACT, FICTION OR DECEPTION

Geoff Leventhall

Noise and Vibration Consultant, 150 Craddocks Avenue Ashtead Surrey KT21 1NL UK, geoff@activenoise.co.uk

ABSTRACT

Infrasound is discussed in terms of what it actually is, how the media has dealt with it and what those with limited knowledge say about it. The perception of infrasound occcurs at levels higher than the levels produced by wind turbines and there is now agreement amongst acousticians that infrasound from wind turbines is not a problem. Statements on infrasound from objectors are considered and it is shown how these may have caused avoidable distress to residents near wind turbines and also diverted attention from the main noise source, which is the repeating sound of the blades interacting with the tower. This is the noise which requires attention, both to reduce it and to develop optimum assessment methods

RÉSUMÉ

L'infrason est discuté en termes de ce qu'il est réellement, son traitement dans les médias et par ceux avec des connaissances limitée à son sujet. La perception de l'infrason est qu'il existe à des niveaux plus hauts que ceux produits par des éoliennes, mais il y a maintenant accord parmi les acousticiens que l'infrason des éoliennes n'est pas un problème. Des rapports sur l'infrason par des protestataires sont considérés et on montre comment ceux-ci ont pu causer de la détresse évitable aux résidants près des éoliennes et également divertir l'attention de la source principale de bruit: le son répétitif de l'interaction des lames avec la tour. C'est ce bruit qui exige de l'attention, pour le réduire et pour développer des méthodes optimales d'évaluation.

1. INFRASOUND

A definition of infrasound is: Acoustic oscillations whose frequency is below the low frequency limit of audible sound (about 16Hz). (IEC 1994)

This definition is incorrect, as sound remains audible at frequencies well below 16Hz. For example, measurements of hearing threshold have been made down to 4Hz for exposure in an acoustic chamber (Watanabe and Møller 1990b) and down to 1.5 Hz for earphone listening (Yeowart, Bryan et al. 1967)

The limit of 16Hz, or more commonly considered as 20Hz, arises from the lower frequency limit of the standardized equal loudness hearing contours measured in units of phons, which is a difficult measurement at low frequencies, not from the lower limit of hearing.

2. THE AUDIBILITY OF INFRASOUND

Hearing sensation does not suddenly cease at 20Hz when the frequency is reduced from 21Hz to 19Hz, but continues from 20Hz down to very low frequencies of several Hertz. It is not possible to define an inaudible infrasound range and an audible audio range as separate regions, unless the infrasound range is limited to naturally occurring infrasound of very low frequencies. The range from about 10Hz to 100Hz can be

considered as the low frequency region, with possible extensions by an octave at each end of this range, giving 5Hz to 200Hz. There is a very fuzzy boundary between infrasound and low frequency noise, which often causes confusion.

Hearing thresholds in the infrasonic and low frequency region are shown in Fig 1. The solid line above 20Hz is the low frequency end of the ISO standard threshold (ISO:226 2003). The dashed curve, 4Hz to 125Hz, is from Watanabe and Møller (Watanabe and Møller 1990b). There is good correspondence between the two threshold measurements in the overlap region.

The slope of the hearing threshold reduces below about 15Hz from approximately 20dB/octave above 15 Hz to about 12dB/octave below. (Yeowart, Bryan et al. 1967). The common assumption that "infrasound" is inaudible is incorrect, arising from an unfortunate choice of descriptor. "Real" infrasound, at levels and frequencies below audibility are largely natural phenomena, although human activities, such as explosions, also produce infrasound. Microphone arrays for the detection of airborne infrasound are a component of the monitoring for the Nuclear Test Ban Treaty

The median hearing threshold is not a simple delineation between "Can hear - Can't hear", but the threshold is rather variable between individuals, depending on their genetics, prior noise exposure and age (ISO7029 2000). The standard deviation of threshold measurements is typically about 6dB.

29 - Vol. 34 No.2 (2006)

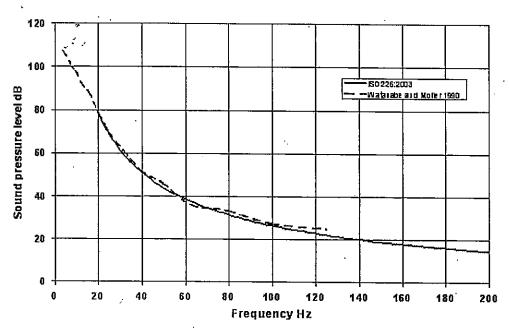


Figure 1. Infrasonic and low frequency threshold

Therefore, it is most unlikely that anyone will be able to hear sound at any frequency which is more than, say, 20dB below its median threshold.

The false concept that infrasound is inaudible, when coupled with the many common misconceptions about its subjective effects, has spawned concerns, particularly expressed in popular publications, which are best described as mythology, rather than fact.

A report reviewing low frequency noise (Leventhall, Benton et al. 2003) is available on the internet.

High levels at very low frequencies: These may result in aural pain, which is not a hearing sensation, but arises from displacements of the middle ear system beyond its comfortable limits. Persons with both hearing ability and hearing loss, and with normal middle ears, exhibit aural pain at a similar stimulus level, which is at about 165dB at 2Hz, reducing to 145dB at 20Hz. Static pressure produces pain at 175 -180dB, whilst eardrum rupture occurs at 185 -190dB (von Gierke and Nixon 1976). A pressure of 5 x 104 Pa, which is about half atmospheric pressure, falls in the 185 -190dB range. A child on a swing experiences infrasound at a level of around 110dB and frequency 0.5Hz, depending on the suspended length and the change in height during the swing.

Natural infrasound: We are enveloped in naturally occurring infrasound, which is in the range from about 0.01 Hz to 2Hz and is at inaudible levels. The lower limit of one cycle in a hundred seconds separates infrasound, as a propagating wave, from all but the fastest fluctuations in barometric pressure. There are many natural sources of infrasound, including meteors, volcanic eruptions, ocean waves, wind and any effect which leads to slow oscillations of the air. Man made sources include explosions, large combustion processes, slow speed fans and machinery. Much natural infrasound is lower *Canadian Acoustics / Acoustique canadienne* in frequency than 1 Hz and below the hearing threshold. (Bedard and George 2000). Our evolution has been in the presence of natural infrasound.

Alternative receptors: The question arises of whether there is a hierarchy of receptors, of which the ear is the most sensitive except at the lower frequencies, when other receptors may come into prominence. Several vibration and contact detectors reside in the skin, covering different frequency ranges (Johnson 2001). The Pacinian corpuscles are the most sensitive, with a threshold displacement of about 0.002mm in the region of 200Hz,. Their sensitivity into lower frequencies reduces at approximately 50dB per decade from the maximum sensitivity.

The threshold displacement of 0.002mm at 200Hz is similar to the particle displacement in air of a 200Hz sound wave of 94dB (1 Pa) pressure. Since the particle displacement in a sound wave of fixed pressure doubles as the frequency is halved (20dB per decade) inaudible sound waves will not excite these subcutaneous receptors.

There is no reliable evidence that infrasound at levels below its hearing threshold has an adverse effect on the body (Berglund and Lindvall 1995). A recent French study of wind turbine noise confirms that infrasound from wind turbines is not a problem. (Chouard 2006)

Body vibrations: It is known that high levels of low frequency noise excite body vibrations (Leventhall, Benton et al. 2003). The most prominent body response is a chest resonance vibration in the region of 50Hz to 80Hz, occurring at levels above about 80dB, which are audible in this frequency range. The low frequency perception thresholds of normal hearing and profoundly deaf subjects have also been investigated (Yamada, Ikuji et al. 1983), when it was shown that the profoundly deaf subjects perceived noise through their body Vol. 34 No.2 (2006) - 30 only at levels which were in excess of normal thresholds. The threshold of sensation of the deaf subjects was 40-50dB above the hearing threshold of those with normal hearing up to a frequency of 63Hz and greater at higher frequencies. For example about 100dB greater at 1 kHz, at which level perception was by the subjects' residual hearing. Deaf subjects experienced chest vibration in the same frequency range as normal hearing subjects.

The much repeated statement that "infrasound can be felt but not heard" is not supported by these measurements. The erroneous thought processes which led to this confusion are possibly:

Infrasound causes body vibrations - (correct at very high levels)

But infrasound is inaudible - (not correct at very high levels)

Therefore infrasound can be felt but not heard - (not correct)

neglecting that the levels to produce body vibrations are well above the hearing threshold. But, as will be shown later, infrasound is not a problem for modern wind turbines.

The dimensions of noise: Noise is multidimensional. A one dimensional view of noise is the A - weighting, which considers only levels and neglects frequencies. Another one-dimensional view is to consider only frequencies and neglect levels. Developing the dimensions further, two dimensions include both frequency and level (the spectrum), three dimensions adds in the time variations of the noise, whilst higher dimensions include subjective response.

Many lay people take the one dimensional view of infrasound, which is based on frequency alone. They express concern at the presence of any infrasound, irrespective of its level. This is a significant failure of understanding.

Public Perceptions: The Public has been misled by the media about infrasound, resulting in needless fears and anxieties, which possibly arise from confusion of the work on subjective effects, which has been carried out at high, audible levels with the popular mindset that infrasound is inaudible. There have also been misunderstandings fostered in publications and popular science books, considered later.

Early work on low frequency noise and its subjective effects was stimulated by the American space program. Launch vehicles produce high noise levels with maximum energy in the low frequency region. Furthermore, as the vehicle accelerates, the crew compartment is subjected to boundary layer turbulence noise for about two minutes after lift-off. Experiments were carried out in low frequency noise chambers on short term subjective tolerance to bands of noise at very high levels of 140 to 150dB, in the frequency range up to 100Hz (Mohr, Cole et al. 1965). It was concluded that the subjects, who were experienced in noise exposure and who were wearing ear protection, could tolerate both broadband and discrete frequency noise in the range 1 Hz to 100Hz at sound pressure levels up to 150dB. Later work suggests that, for 24 hour exposure, levels of 120-130dB are tolerable below 20Hz. These limits were set to prevent direct physiological damage, not for comfort. (Mohr, Cole et al. 1965; Westin 1975; von Gierke and Nixon 1976).

The American work did not attract media attention, but in the late 1960's two papers from France led to much publicity and speculative exaggerations. (Gavreau, Condat et al. 1966; Gavreau 1968). Although both papers carry "infrasound" in their titles, there is very little on frequencies below 20Hz (Leventhall 2005). Some rather casual and irresponsible experiments of the "try it and see" variety were carried out on exposure of the laboratory staff, primarily using high intensity pneumatic sources at frequencies mainly at the upper end of the low frequency range, or above. For example, 196Hz at 160dB sound level and 340Hz at 155dB sound level. A high intensity whistle at 2600Hz is also included in the "infrasound" papers:

Infrasounds are not difficult to study but they are potentially harmful. For example one of my colleagues, R Levavasseur, who designed a powerful emitter known as the 'Levavasseur whistle' is now a victim of his own inventiveness. One of his larger whistles emitting at 2600Hz had an acoustic power of 1 kW. This proved sufficient to make him a lifelong invalid. (Gavreau 1968)

ï

Of course, 2600Hz is not infrasound, but the misleading implication is that infrasound caused injury to Levavasseur. A point source of sound of power 1 kW will produce a sound level of about 140dB at 1 m, which is a very undesirable exposure at 2600Hz.

Referring to the exposure of 160dB at 196Hz:

...after the test we became aware of a painful 'resonance' within our bodies - everything inside us seemed to vibrate when we spoke or moved. What had happened was that this sound at 160 decibels...... acting directly on the body produced intense friction between internal organs, resulting in sever irritation of the nerve endings. Presumably if the test had lasted longer than five minutes, internal haemorrhage would have occurred. (Gavreau 1968)

96 Hz is not infrasound, but the unpleasant effects at 160dB are described in a paper which is said to be about "Infrasound". Internal haemorrhage is often quoted as an effect of exposure to infrasound. Exposure levels were not given for frequencies of 37Hz and 7Hz, although the 7Hz caused subjective disturbance and vibrations of the laboratory walls. Unfortunately, these papers by Gavreau were seized upon by the press and presented to claim that infrasound was dangerous. For example "The silent killer all around us", London Evening News, 25 May 1974. When work by other investigators detected moderate levels of infrasound in, for example, road vehicles, the press was delighted, leading to "The silent sound menaces drivers" - Daily Mirror, 19 October 1969.

31 - Vol. 34 No.2 (2006)

Canadian Acoustics / Acoustique canadienne

"Danger in unheard car sounds" The Observer, 21 April 1974.

The most deplorable example, in a book which claimed to have checked its sources, was in "Supernature" by Lyall Watson (Coronet 1973). In this it is claimed that the technician who gave one of Gavreau's high power infrasound sources its trial run "fell down dead on the spot" and that two infrasonic generators "focused on a point even five miles away produce a resonance that can knock a building down as effectively as a major earthquake".

T hese ficticious statements are, of course, totally incorrect but are clear contributors to some of the unfounded concerns which the public feels about infrasound. One can detect a transition from Gavreau and his colleague feeling ill after exposure to the high level of 196Hz to "fell down dead on the spot" and a further transition from laboratory walls vibrating to "can knock a building down", transitions which resulted from repeated media exaggerations over a period of five or six years.

The misunderstanding between infrasound and low frequency noise continues to the present day. A newspaper article on low frequency noise from wind turbines (Miller 24 January 2004), opens with:

Onshore wind farms are a health hazard to people living near them because of the low-frequency noise that they emit, according to new medical studies. A French translation of this article for use by objectors' groups opens with:

De nouvelles etudes medicales indiquent que les eoliennes terrestres representent un risque pour la sante des gens habitant a proximite, a cause d'emission d'infrasons.

The translation of low frequency noise into infrasons continues through the article. This is not a trivial misrepresentation because, following on from Gavreau, infrasound has been connected with many misfortunes, being blamed for problems for which some other explanation had not yet been found e.g., brain tumours, cot deaths of babies, road accidents.

Infrasound, and its companion low frequency noise, now occupy a special position in the national psyche of a number of countries, where they lie in wait for an activating trigger to re-generate concerns of effects on health. Earlier triggers have been defence establishments and gas pipelines. A current trigger is wind turbines.

3 INFRASOUND AND LOW FREQUENCY NOISE FROM WIND TURBINES

Early designs of downwind turbines produced pressure pulses at about once per second, which were high enough to cause vibrations in lightweight buildings nearby. (Shepherd and Hubbard 1991). A series of pulses occurring at one per second analyses into a harmonic series in the infrasound region, which is the origin of the link between wind turbines and infrasound One could discuss whether the Fourier timefrequency duality is misleading on this point, since it was the effects of peaks of the pulses which caused the building vibration, not a continuous infrasonic wave. Similar vibration would have occurred with a faster stream of pulses, with the limiting condition that the pulse repetition rate was lower than the period of the vibration.

Modern up-wind turbines produce pulses which also analyse as infrasound, but at low levels, typically 50 to 70dB, well below the hearing threshold. Infrasound can be neglected in the assessment of the noise of modern wind turbines (Jakobsen 2004)

Fig 2 shows the infrasonic and low frequency noise at 65m from a 1.5MW wind turbine on a windy day. The fol-

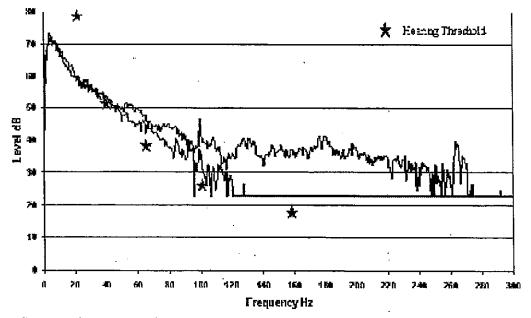


Figure 2. Spectrum of a modern upwind wind turbine - Upper trace Wind Turbine Noise. Lower trace Background noise.

Canadian Acoustics / Acoustique canadienne

lowing should be noted.

• The fall off below about 5Hz is an instrument effect. The background noise actually increases down to the frequencies of atmospheric pressure variations.

• Frequencies below 40Hz cannot be distinguished from background noise due to wind.

• The wind turbine noise and background noise separate above about 40Hz and both rise above the median hearing threshold.

• The measurements were taken at 65m. Levels are likely to be about 15dB lower at normal separation distances

On the occasions, such as unusually turbulent inflow conditions, when low frequency noise is produced by wind turbines, it may not be perceived as a noise, but rather as an unidentified adverse component in the environment, which disappears if the turbines stop, or if the inflow conditions change. This is because we are not accustomed to listening to low levels of broad band low frequency noise and, initially, do not always recognise it as a "noise", but more as a "disturbance" in the environment. An analogy is with air-conditioning rumble noise, which is noticed when it stops.

What Objectors Say Objectors have eagerly grasped the media hype on infrasound and low frequency noise and used it to engender concerns about wind turbine developments. In this they have, possibly, done a disservice to the communities they were established to help, through raising false concerns and diverting attention from more important aspects of the development. Two examples are as follows.

In the UK there is an Advertising Standards Authority(ASA), to which deceptive adverts can be referred for assessment. An objectors' group (Ochils Environmental Protection Group) issued a leaflet "FACTS ABOUT WIND POWER". containing a number of assertions including:

. "... wind turbines still create noise pollution, notably 'in-

fra sound' - inaudible frequencies which nevertheless cause stress-related illness ..."

In their Judgment (April 02, 2004), the ASA concluded that the objectors had not produced evidence to substantiate their claim.

In the USA, a high profile objector (Nina Pierpont of Malone NY) placed an advertisement in a local paper, consisting entirely of selected quotations from a previously published technical paper by van den Berg (Van den Berg 2004). However the comment "[i.e. infrasonic]", as shown in Fig 3, was added in the first line of the first quotation in a manner which might mislead naive readers into believing that it was part of the original.

The van den Berg paper was based on A-weighted measurements and had no connection with infrasound. So, not only is the advertisement displaying the advertiser's self deception, but this has also been propagated to others who have read it. To mistakenly connect the noise to infrasound, which has unpleasant associations is, however, a way to gather support. (When a person has adopted a particular mindset, new information is processed to support that mindset. We all do this.)

It takes little technical knowledge to be aware that a modulated high frequency wave does not contain the modulation components. For example, an amplitude modulated radio wave contains the carrier wave and sidebands, which are close in frequency to the carrier. The fluctuations of wind turbine noise (swish – swish) are a very low frequency modulation of the aerodynamic noise, which is typically in the region of 500 - 1000 Hz. The modulation occurs from a change in radiation characteristics as the blade passes the tower, but the modulating frequencies do not have an independent and separate existence.

The comment, [i.e. infrasonic], added into Fig 3 gives incorrect information. Claims of infrasound are irrelevant and possibly harmful, should they lead to unnecessary fears.

Wind Turbines & Infrasound: What the latest research says

- Pad Adventisement -

"At hight the wind turbines cause a low pitched thumping [i.e., intrasenic] sound superimposed on a breadband 'noisy' sound, the 'thumps' occurring at the rate at which blades pass a turbine tower.... The number and severity of noise complaints near the wind park are at least in part explained by the two main findings of this study: actual sound levels are considerably higher than predicted, and wind turbines can produce sound with an impulsive character."

-- Professor Frits Q.P. van den Berg, University of Groningen, the Metherlands, November 2004 (see excerpts from research articles, below)

Figure 3 Part of an advertisement placed by an objector in the Malone (NY) Telegram, 25th February 2005.

It has been shown that fear of a noise source, for example that aircraft might crash, increases the extra annoyance of a person with a high fear of a crash by up to 19dB DNL equivalent, compared with a person who has no fear (Miedema and Vos 1999).

Fear of a source is not the same as fear of the noise itself, but it is understandable that those who fear the effects of a noise upon their health will be less tolerant of the noise than those who do not fear it. We can only speculate upon the harm which objectors might have done by, for example, taking a one dimensional view of infrasound and publicising the subjective effects of high levels of both infrasound and low frequency noise in a manner which implies that the effects may also be caused by the low levels produced by wind turbines.

4 WIND TURBINE NOISE

It has been shown above that there is insignificant infrasound from wind turbines and that there is normally little low frequency noise. Turbulent air inflow conditions cause enhanced levels of low frequency noise, which may be disturbing, but the overriding noise from wind turbines is the fluctuating audible swish, mistakenly referred to as "infrasound" or "low frequency noise". Objectors uninformed and mistaken use of these terms (as in Fig 3), which have acquired a number of anxiety-producing connotations, has led to unnecessary fears and to unnecessary costs, such as for re-measuring what was already known, in order to assuage complaints.

Attention should be focused on the audio frequency fluctuating swish, which some people may well find to be very disturbing and stressful, depending on its level. The usual equivalent level measurements and analyses are incomplete, as these measurements are taken over a time period which is much longer than the fluctuation period and information on the fluctuations is lost. A time varying sound is more annoying than a steady sound of the same average level and this is accounted for by reducing the permitted level of wind turbine noise. However, more work is required to ensure that the optimum levels have been set.

5 CONCLUSIONS

- Infrasound from wind turbines is below the audible threshold and of no consequence.
- Low frequency noise is normally not a problem, except under conditions of unusually turbulent inflow air.
- The problem noise from wind turbines is the fluctuating swish. This may be mistakenly referred to as infrasound by those with a limited knowledge of acoustics, but it is entirely in the normal audio range and is typically 500Hz to 1000Hz. It is difficult to have a useful discourse with objectors whilst they continue to use acoustical terms incorrectly. This is unfortunate, as there are wind turbine installations which may have noise problems.
- It is the swish noise on which attention should be focused, in order to reduce it and to obtain a proper estimate of its

effects. It will then be the responsibility of legislators to fix the criterion levels, However, although the needs of sensitive persons may influence decisions, limits are not normally set to satisfy the most sensitive.

6 REFERENCES

Bedard, A. J. and T. M. George (2000). "Atmospheric Infrasound." Physics Today 53 (3): 32 - 37.

Berglund, B. and T. Lindvall (1995). "Community Noise." Centre for Sensory Research, Karolinska Institute.

Chouard, C. H. (2006). "Le retentissement du fonctionnement des éoliennes

sur la santé de l'homme." Report to National Academy of Medecine.

Gavreau, V. (1968). "Infrasound." Science Journal Vol 4(No.1): 33-37.

Gavreau, V., R. Condat, et al. (1966). "Infra-sons: generateur, detecteurs, proprietes physique, effets biologiques." Acustica 17(1): 1-10.

IEC (1994). "60050-801:1994 International Electrotechnical Vocabulary - Chapter 801: Acoustics and electroacoustics."

ISO7029 (2000). "Statistical distribution of hearing thresholds as a function of age."

Jakobsen, J. (2004). "Infrasound emission from wind turbines." Proc 11th International Meeting on Low Frequency Noise and Vibration and its Control, Maastricht August 2004: 147 to 156.

Johnson, K. O. (2001). "The roles and functions of cutaneous mechanoreceptors." Current Opinion in Neurobiology 11: 455-461.

Leventhall, H. G. (2005). "How the "mythology" of infrasound and low frequency noise related to wind turbines might have developed." Proc Wind Turbine Noise 2005 INCE/Europe, Berlin September 2005.

Leventhall, H. G., S. Benton, et al. (2003). "A review of published research on low frequency noise and its effects. Report for Defra." http://www.defra.gov.uk/environment/noise/ research/lowfrequency/pdf/lowfreqnoise.pdf.

Miedema, H. and H. Vos (1999). "Demographic and attitudinal factors that modify annoyance from transportation noise." JASA 105: 3336 - 3344.

Note: Continued on Page 36

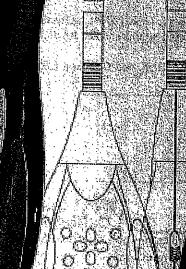
Vol. 34 No.2 (2006) - 34

Canadian Acoustics / Acoustique canadienne

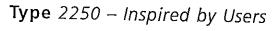
Award-winping Innovation

Created for You

With over 60 years as pioneers within the world of sound and vibration, Bruel & Kjær presents its innovative, award-winning, 4thygeneration of hand-held instruments Athygeneration of inang-neigenstruments for sound, and vibration measurement. Development of this, atestegeneration Type 2250 – was instigated and inspired entirely by the requirements of users par-ticipating in in-depth workshops around the world. The hardware has been designed to meet the specific ergonomic requirements of users and the application 基金的方面。 期间的建筑。20 requirements of users, and the application software covers everything from environmental-noise, troubleshooting, and, occupational health, to quality control. The software: packages.can:beilicensed-separately, so you can get what you need when you need it and won't get left behind if your requirements change. This way, t platform ensures the safety of your ment now and in the future. Creater 长雨楼 and made for you personally you and the will make a difference toy. all your measurement itas


New Sound Recording Orthogon And The Sound Recording Orthogon And all other software record measurements of the software identity and do Recordings and the measurements of the software after transferred

ll year nood armer anlare ar ar Stoure ye herewelanyeers the arm


> GEAMEGIOR 2001013900099997777 101991000477545900990 ASAEONTOS Www.blaveconi.940018328900 29459900792939009 Novemasi.673.90070 19469052242909 Www.Blometerin.943146261393890

CHOMASSARS AND ALL AND ALL

OKIK

Brüel & Kjær 📲

Note: Continued from Page 34

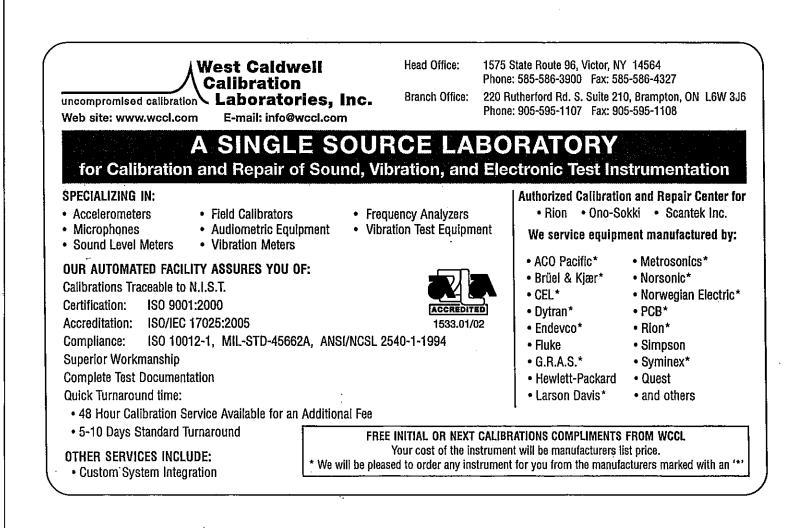
Miller, C. (24 January 2004). "Wind farms 'make people sick who live up to a mile away'." Sunday Telegraph.

Mohr, G. C., J. N. Cole, et al. (1965). "Effects of low frequency and infrasonic noise on man." Aerospace Medicine 36(9): 817-824.

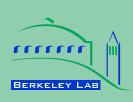
Shepherd, K. P. and H. H. Hubbard (1991). "Physical characteristics and perception of low frequency noise from wind turbines." Noise Control Eng 36(1): 5 -15.

Van den Berg, G. P. (2004). "Effects of the wind profile at night on wind turbine sound." Jnl Sound Vibn: 955-970.

von Gierke, H. E. and C. Nixon (1976). Effects of intense


infrasound on man. In: Infrasound and Low Frequency Vibration. Editor: W Tempest. Academic Press.

Watanabe, T. and H. Møller (1990b). "Low frequency hearing thresholds in pressure field and free field." Jnl Low Freq Noise Vibn 9(3): 106-115.


Westin, J. B. (1975). "Infrasound: A short review of effects. on man." Aviat Space Environ Med 46(9): 1135-40.

Yamada, S., M. Ikuji, et al. (1983). "Body sensations of low frequency noise of ordinary persons and profoundly deaf persons." Jnl Low Freq Noise Vibn 2(3): 32-36.

Yeowart, N. S., M. E. Bryan, et al. (1967). "The monaural MAP threshold of hearing at frequencies from 1.5 to 100c/s." J Sound Vibration 6: 335-342.

LBNL-2829E

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

Ben Hoen, Ryan Wiser, Peter Cappers, Mark Thayer, and Gautam Sethi

Environmental Energy Technologies Division

December 2009

Download from http://eetd.lbl.gov/EA/EMP

The work described in this report was funded by the Office of Energy Efficiency and Renewable Energy (Wind & Hydropower Technologies Program) of the U.S. Department of Energy under Contract No. DE-AC02-05CH1123.

Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer.

LBNL-2829E

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

Prepared for the

Office of Energy Efficiency and Renewable Energy Wind & Hydropower Technologies Program U.S. Department of Energy Washington, D.C.

Principal Authors:

Ben Hoen, Ryan Wiser, Peter Cappers Ernest Orlando Lawrence Berkeley National Laboratory

> Mark Thayer San Diego State University

> > Gautam Sethi Bard College

1 Cyclotron Road, MS 90R4000 Berkeley CA 94720-8136

December 2009

The work described in this report was funded by the Office of Energy Efficiency and Renewable Energy (Wind & Hydropower Technologies Program) of the U.S. Department of Energy under Contract No. DE-AC02-05CH1123.

Abstract

With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering wind power development nearby, there is an urgent need to empirically investigate common community concerns about wind project development. The concern that property values will be adversely affected by wind energy facilities is commonly put forth by stakeholders. Although this concern is not unreasonable, given property value impacts that have been found near high voltage transmission lines and other electric generation facilities, the impacts of wind energy facilities on residential property values had not previously been investigated thoroughly. The present research collected data on almost 7,500 sales of singlefamily homes situated within 10 miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from eight different hedonic pricing models, as well as both repeat sales and sales volume models. The various analyses are strongly consistent in that none of the models uncovers conclusive evidence of the existence of any widespread property value impacts that might be present in communities surrounding wind energy facilities. Specifically, neither the view of the wind facilities nor the distance of the home to those facilities is found to have any consistent, measurable, and statistically significant effect on home sales prices. Although the analysis cannot dismiss the possibility that individual homes or small numbers of homes have been or could be negatively impacted, it finds that if these impacts do exist, they are either too small and/or too infrequent to result in any widespread, statistically observable impact.

List of Tables	vi
List of Figures	. vii
Acknowledgements	viii
Executive Summary	ix
1. Introduction	1
2. Previous Research	4
2.1. Hedonic Models and Environmental Disamenities	4
2.2. Impacts of Wind Projects on Property Values	6
3. Data Overview	. 10
3.1. Site Selection	
3.2. Data Collection	
3.2.1. Tabular Data	. 13
3.2.2. GIS Data	. 15
3.2.3. Field Data	. 15
3.2.4. Field Data Collection	. 18
3.3. Data Summary	. 18
4. Base Hedonic Model	. 23
4.1. Dataset	
4.2. Model Form	
4.3. Analysis of Results	
5. Alternative Hedonic Models	
5.1. View and Distance Stability Models	
5.1.1. Dataset and Model Form	
5.1.2. Analysis of Results	
5.2. Continuous Distance Model	
5.2.1. Dataset and Model Form	
5.2.2. Analysis of Results	
5.3. All Sales Model	
5.3.1. Dataset and Model Form	
5.3.2. Analysis of Results	
5.4. Temporal Aspects Model	
5.4.1. Dataset and Model Form	
5.4.2. Analysis of Results	
5.5. Orientation Model	
5.5.1. Dataset and Model Form	
5.5.2. Analysis of Results	
5.6. Overlap Model	
5.6.1. Dataset and Model Form.	
5.6.2. Analysis of Results	
6. Repeat Sales Analysis	
6.1. Repeat Sales Models and Environmental Disamenities Literature	
S.1. Iter tar Sales 110 and Lit in Similarian Disamonito Literature	

Table of Contents

6.2.	Dataset	
6.3.	Model Form	
6.4.	Analysis of Results	59
7. Sal	les Volume Analysis	63
7.1.	Dataset	
7.2.	Model Form	
7.3.	Analysis of Results	66
8. Wi	nd Projects and Property Values: Summary of Key Results	
8.1.	Area Stigma	
8.2.	Scenic Vista Stigma	
8.3.	Nuisance Stigma	73
9. Conc	clusions	75
Referen	ces	76
Append	ix A : Study Area Descriptions	82
	VAOR Study Area: Benton and Walla Walla Counties (Washington), and Umatilla	
	ty (Oregon)	
	CXHC Study Area: Howard County (Texas)	
	OKCC Study Area: Custer County (Oklahoma) ABV Study Area: Buena Vista County (Iowa)	
	LLC Study Area: Lee County (Illinois)	
	VIKCDC Study Area: Kewaunee and Door Counties (Wisconsin)	
	PASC Study Area: Somerset County (Pennsylvania)	
A.8 P	PAWC Study Area: Wayne County (Pennsylvania)	105
	VYMCOC Study Area: Madison and Oneida Counties (New York)	
A.10	NYMC Study Area: Madison County (New York)	111
Append	ix B : Methodology for Calculating Distances with GIS	114
Append	ix C : Field Data Collection Instrument	117
Append	ix D: Vista Ratings with Photos	120
Append	ix E : View Ratings with Photos	122
Append	ix F : Selecting the Primary ("Base") Hedonic Model	124
	Discussion of Fully Unrestricted Model Form	
	nalysis of Alterative Model Forms	
F.3 S	electing a Base Model	131
	ix G : OLS Assumptions, and Tests for the Base Model	
Append	ix H : Alternative Models: Full Hedonic Regression Results	139

List of Tables

Table 1: Summary of Existing Literature on Impacts of Wind Projects on Property Values	9
Table 2: Summary of Study Areas	
Table 3: Definition of VIEW Categories	16
Table 4: Definition of VISTA Categories	
Table 5: Summary of Transactions across Study Areas and Development Periods	19
Table 6: Summary Statistics: All Sales and Post-Construction Sales	21
Table 7: Summary of Variables of Interest: All Sales and Post-Construction Sales	22
Table 8: List of Variables of Interest Included in the Base Model	25
Table 9: List of Home and Site Characteristics Included in the Base Model	27
Table 10: Results from the Base Model	
Table 11: Frequency Crosstab of VIEW and DISTANCE Parameters	35
Table 12: Results from Distance and View Stability Models	
Table 13: Results from Continuous Distance Model	
Table 14: Frequency Summary for DISTANCE in All Sales Model	39
Table 15: Results from All Sales Model	
Table 16: Results from Equality Test of VIEW Coefficients in the All Sales Model	41
Table 17: Results from Equality Test of DISTANCE Coefficients in the All Sales Model	
Table 18: Frequency Crosstab of DISTANCE and PERIOD	
Table 19: Results from Temporal Aspects Model	
Table 20: Results from Equality Test of Temporal Aspects Model Coefficients	
Table 21: Frequency Crosstab of VIEW and ORIENTATION	49
Table 22: Percentage Crosstab of VIEW and ORIENTATION	49
Table 23: Results from Orientation Model	
Table 24: Definition of OVERLAP Categories	51
Table 25: Frequency Crosstab of OVERLAP and VIEW	
Table 26: Results from Overlap Model	54
Table 27: List of Variables Included in the Repeat Sales Model	
Table 28: Results from Repeat Sales Model	
Table 29: Sales Volumes by PERIOD and DISTANCE	64
Table 30: Equality Test of Sales Volumes between PERIODS	67
Table 31: Equality Test of Volumes between DISTANCES using 3-5 Mile Reference	67
Table 32: Equality Test of Sales Volumes between DISTANCES using 1-3 Mile Reference	67
Table 33: Impact of Wind Projects on Property Values: Summary of Key Results	69
Table A - 1: Summary of Study Areas	
Table A - 2: Summarized Results of Restricted and Unrestricted Model Forms	128
Table A - 3: Summary of VOI Standard Errors for Restricted and Unrestricted Models	130
Table A - 4: Summary of VOI Coefficients for Restricted and Unrestricted Models	130
Table A - 5: Summary of Significant VOI Above and Below Zero in Unrestricted Models	131
Table A - 6: Full Results for the Distance Stability Model	139
Table A - 7: Full Results for the View Stability Model	
Table A - 8: Full Results for the Continuous Distance Model	141
Table A - 9: Full Results for the All Sales Model	
Table A - 10: Full Results for the Temporal Aspects Model	
Table A - 11: Full Results for the Orientation Model	
Table A - 12: Full Results for the Overlap Model	146

List of Figures

Figure 1: Map of Study Areas and Potential Study Areas	
Figure 2: Frequency of VISTA Ratings for All and Post-Construction Transactions	
Figure 3: Frequency of DISTANCE Ratings for Post-Construction Transactions	
Figure 4: Frequency of VIEW Ratings for Post-Construction Transactions	
Figure 5: Results from the Base Model for VISTA	
Figure 6: Results from the Base Model for VIEW	
Figure 7: Results from the Base Model for DISTANCE	
Figure 8: Results from the Temporal Aspects Model	
Figure 9: Repeat Sales Model Results for VIEW	61
Figure 10: Repeat Sales Model Results for DISTANCE	61
Figure 11: Sales Volumes by PERIOD and DISTANCE	
Figure A - 1: Map of Study Areas	
Figure A - 2: Map of WAOR Study Area	
Figure A - 3: Map of TXHC Study Area	
Figure A - 4: Map of OKCC Study Area	
Figure A - 5: Map of IABV Study Area	
Figure A - 6: Map of ILLC Study Area	
Figure A - 7: Map of WIKCDC Study Area	
Figure A - 8: Map of PASC Study Area	102
Figure A - 9: Map of PAWC Study Area	105
Figure A - 10: Map of NYMCOC Study Area	108
Figure A - 11: Map of NYMC Study Area	111
Figure A - 12: Field Data Collection Instrument	117
Figure A - 13: Field Data Collection Instrument - Instructions - Page 1	118
Figure A - 14: Field Data Collection Instrument - Instructions - Page 2	119
Figure A - 15: Histogram of Standardized Residuals for Base Model	133
Figure A - 16: Histogram of Mahalanobis Distance Statistics for Base Model	
Figure A - 17: Histogram of Standardized Residuals for All Sales Model	
Figure A - 18: Histogram of Mahalanobis Distance Statistics for All Sales Model	

Acknowledgements

The work described in this report was funded by the Office of Energy Efficiency and Renewable Energy (Wind & Hydropower Technologies Program) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would particularly like to thank Megan McCluer, Patrick Gilman, Jim Ahlgrimm, Michele Desautels, and Steve Lindenberg, all of the U.S. Department of Energy, for their long-term support of this work. For reviewing drafts of this report and/or for providing comments that helped shape the early thinking on this project, the authors thank Mark Bolinger, Galen Barbose, and Larry Dale (Berkeley Lab), Alejandro Moreno (US DOE), Larry Flowers and Eric Lantz (NREL), Peter Dent and Sally Sims (Oxford Brookes University), Sandy Bond (Curtin Business School), Randy Winter, Dave Loomis, and Jennifer Hinman (Illinois State University), Thomas Priestley (CH2M Hill), Barton DeLacy (Cushman & Wakefield), Dave Maturen (Maturen Appraisal), Mike McCann (McCann Appraisal), Tom Hewson (Energy Ventures Analysis), Kimberly Centera (AES), Jeff Peterson (NYSERDA), Charles Kubert (Clean Energy Group), Lisa Linowes (Industrial Wind Action), Chris Taylor (Element Power), Sam Enfield (MAP Royalty, Inc.), and Laurie Jodziewicz (AWEA). Of course, any remaining omissions or inaccuracies are those of the authors.

Executive Summary

Overview

Wind power development in the United States has expanded dramatically in recent years. If that growth is to continue it will require an ever-increasing number of wind power projects to be sited, permitted, and constructed. Most permitting processes in the U.S. require some form of environmental impact assessment as well as public involvement in the siting process. Though public opinion surveys generally show that acceptance towards wind energy is high, a variety of concerns with wind power development are often expressed on the local level during the siting and permitting process. One such concern is the potential impact of wind energy projects on the property values of nearby residences.

Concerns about the possible impact of wind power facilities on residential property values can take many forms, but can be divided into the following non-mutually exclusive categories:

- Area Stigma: A concern that the general area surrounding a wind energy facility will appear more developed, which may adversely affect home values in the local community regardless of whether any individual home has a view of the wind turbines.
- Scenic Vista Stigma: A concern that a home may be devalued because of the view of a wind energy facility, and the potential impact of that view on an otherwise scenic vista.
- Nuisance Stigma: A concern that factors that may occur in close proximity to wind turbines, such as sound and shadow flicker, will have a unique adverse influence on home values.

Although concerns about the <u>possible</u> impact of wind energy facilities on the property values of nearby homes are reasonably well established, the available literature¹ that has sought to quantify the impacts of wind projects on residential property values has a number of shortcomings:

- 1) Many studies have relied on surveys of homeowners or real estate professionals, rather than trying to quantify real price impacts based on market data;
- 2) Most studies have relied on simple statistical techniques that have limitations and that can be dramatically influenced by small numbers of sales transactions or survey respondents;
- 3) Most studies have used small datasets that are concentrated in only one wind project study area, making it difficult to reliably identify impacts that might apply in a variety of areas;
- 4) Many studies have not reported measurements of the statistical significance of their results, making it difficult to determine if those results are meaningful;
- 5) Many studies have concentrated on an investigation of the existence of Area Stigma, and have ignored Scenic Vista and/or Nuisance Stigmas;
- 6) Only a few studies included field visits to homes to determine wind turbine visibility and collect other important information about the home (e.g., the quality of the scenic vista); and
- 7) Only two studies have been published in peer-reviewed academic journals.

¹ This literature is briefly reviewed in Section 2 of the full report, and includes: Jordal-Jorgensen (1996); Jerabek (2001); Grover (2002); Jerabek (2002); Sterzinger et al. (2003); Beck (2004); Haughton et al. (2004); Khatri (2004); DeLacy (2005); Poletti (2005); Goldman (2006); Hoen (2006); Firestone et al. (2007); Poletti (2007); Sims and Dent (2007); Bond (2008); McCann (2008); Sims et al. (2008); and Kielisch (2009).

This report builds on the previous literature that has investigated the potential impact of wind projects on residential property values by using a hedonic pricing model and by avoiding many

of the shortcomings enumerated above. The hedonic pricing model is one of the most prominent and reliable methods for identifying the marginal impacts of different housing and community characteristics on residential property values (see side bar). This approach dates to the seminal work of Rosen (1974) and Freeman (1979), and much of the available literature that has investigated the impacts of potential disamenities on property values has relied on this method.²

To seed the hedonic model with appropriate market data, this analysis collects information on a large quantity of residential home sales (i.e., transactions) (n = 7,459) from ten communities surrounding 24 existing wind power facilities spread across multiple parts of the U.S. (e.g., nine states). Homes included in this sample are located from 800 ft to over five miles from the nearest wind energy facility, and were sold at any point from before wind facility announcement to over four years after the construction of the nearby wind project. Each of the homes that sold was visited to determine the degree to which the wind facility was likely to have been visible at the time of sale and to collect other essential data.

To assess the potential impacts of all three of the property value stigmas described earlier, a base hedonic model is applied as well as seven alternative hedonic models each designed to investigate the reliability

What Is a Hedonic Pricing Model?

Hedonic pricing models are frequently used by economists and real estate professionals to assess house and the impacts of community characteristics on property values by investigating the sales prices of homes. A house can be thought of as a bundle of characteristics (e.g., number of square feet, number of bathrooms). When a price is agreed upon by a buyer and seller there is an implicit understanding that those characteristics have When data from a large number of value. residential transactions are available, the individual marginal contribution to the sales price of each characteristic for an average home can be estimated with a hedonic regression model. Such a model can statistically estimate, for example, how much an additional bathroom adds to the sale price of an average home. A particularly useful application of the hedonic model is to value non-market goods – goods that do not have transparent and observable market prices. For this reason, the hedonic model is often used to derive value estimates of amenities such as wetlands or lake views, and disamenities such as proximity to and/or views of highvoltage transmission lines, roads, cell phone towers, and landfills. It should be emphasized that the hedonic model is not typically designed to appraise properties (i.e., to establish an estimate of the market value of a home at a specified point in time), as would be done with an automated valuation model. Instead, the typical goal of a hedonic model is to estimate the marginal contribution of individual house or community characteristics to sales prices.

of the results and to explore other aspects of the data (see Table ES - 1 below). In addition, a repeat sales model is analyzed, and an investigation of possible impacts on sales volumes is

² Many of these studies are summarized in the following reviews: Kroll and Priestley (1992); McCann (1999); Bateman et al. (2001); Boyle and Kiel (2001); Jackson (2001); Simons and Saginor (2006); and Leonard et al. (2008). For further discussion of the hedonic model and its application to the quantification of environmental stigmas see Jackson (2005) and Simons (2006a).

conducted. Though some limitations to the analysis approach and available data are acknowledged, the resulting product is the most comprehensive and data-rich analysis to date in the U.S. or abroad on the impacts of wind projects on nearby property values.

Analysis Findings

Table ES - 1 describes the ten resulting statistical models that are employed to investigate the effects of wind facilities on residential sales prices, and the specific stigmas that those models investigate. Though all models test some combination of the three possible stigmas, they do so in different ways. For instance, the Base Model asks the question, "All else being equal, do homes <u>near</u> wind facilities sell for prices different than for homes located <u>farther away</u>?", while the All Sales Model asks, "All else being equal, do homes <u>near</u> wind facilities that sell <u>after</u> the construction of the wind facility sell for prices different from similar homes that sold before the announcement and construction of the facility?" Each model is therefore designed to not only test for the reliability of the overall results, but also to explore the myriad of potential effects from a variety of perspectives. Table ES-2 summarizes the results from these models.

Statistical Model	Description		
Base Hedonic Model	Using only "post-construction" transactions (those that occurred after the wind facility built), this model investigates all three stigmas in a straightforward manner		
Alternative Hedonic Models			
View Stability	Using only post-construction transactions, this model investigates whether the Scenic V Stigma results from the Base Model are independent of the Nuisance and Area Stigma results		
Distance Stability	Using only post-construction transactions, this model investigates whether the Nuisance and Area Stigma results from the Base Model are independent of the Scenic Vista Stigma results		
Continuous Distance	Using only post-construction transactions, this model investigates Area and Nuisance Stigmas by applying a continuous distance parameter as opposed to the categorical variables for distance used in the previous models		
All Sales	Using all transactions, this model investigates whether the results for the three stigmas change if transactions that occurred before the announcement and construction of the wind facility are included in the sample		
Temporal Aspects	Using all transactions, this model further investigates Area and Nuisance Stigmas and how they change for homes that sold more than two years pre-announcement through the period more than four years post-construction		
Orientation	Using only post-construction transactions, this model investigates the degree to which a home's orientation to the view of wind turbines affects sales prices		
Overlap	Using only post-construction transactions, this model investigates the degree to which the overlap between the view of a wind facility and a home's primary scenic vista affects sales prices		
Repeat Sales Model	Using paired transactions of homes that sold once pre-announcement and again post- construction, this model investigates the three stigmas, using as a reference transactions of homes located outside of five miles of the nearest wind turbine and that have no view of the turbines		
Sales Volume Model	Using both pre-announcement and post-construction transactions, this model investigates whether the rate of home sales (not the price of those sales) is affected by the presence of nearby wind facilities		

Table ES - 1: Description of Statistical Models

	Is the			
Statistical Model	Area Stigma?	Scenic Vista Stigma?	Nuisance Stigma?	Section Reference
Base Model	No	No	No	Section 4
View Stability	Not tested	No	Not tested	Section 5.1
Distance Stability	No	Not tested	No	Section 5.1
Continuous Distance	No	No	No	Section 5.2
All Sales	No	No	Limited	Section 5.3
Temporal Aspects	No	No	No	Section 5.4
Orientation	No	No	No	Section 5.5
Overlap	No	Limited	No	Section 5.6
Repeat Sales	No	Limited	No	Section 6
Sales Volume	No	Not tested	No	Section 7

Table ES-2: Impact of Wind Projects on Property Values: Summary of Key Results

"No"..... "Yes"..... "Limited"..... No statistical evidence of a negative impact

Strong statistical evidence of a negative impact

Limited and inconsistent statistical evidence of a negative impact

This model did not test for this stigma

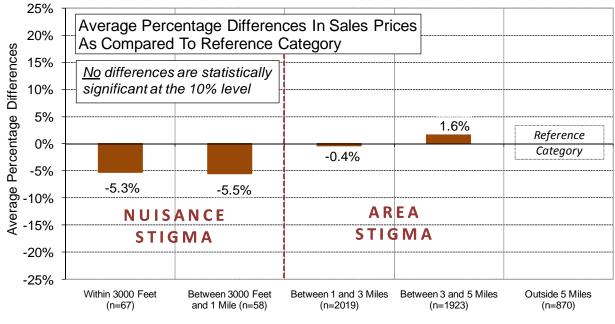
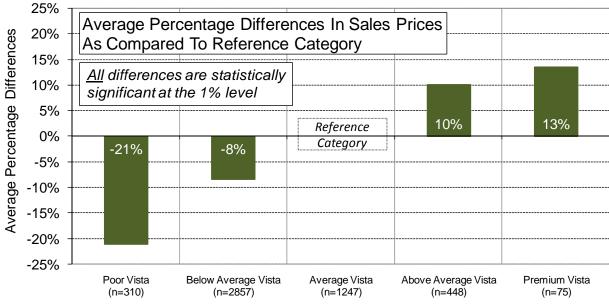
Base Model Results

The Base Model serves as the primary model and allows all three stigmas to be explored. In sum, this model finds no persuasive evidence of any of the three potential stigmas: neither the view of the wind facilities nor the distance of the home to those facilities is found to have any consistent, measurable, and statistically significant effect on home sales prices.

- Area Stigma: To investigate Area Stigma, the model tests whether the sales prices of homes situated anywhere outside of one mile and inside of five miles of the nearest wind facility are measurably different from the sales price of those homes located outside of five miles. No statistically significant differences in sales prices between these homes are found (see Figure ES-1).
- Scenic Vista Stigma: For Scenic Vista Stigma, the model is first used to investigate whether the sales prices of homes with varying scenic vistas absent the presence of the wind facility are measurably different. The model results show dramatic and statistically significant differences in this instance (see Figure ES-2); not surprisingly, home buyers and sellers consider the scenic vista of a home when establishing the appropriate sales price. Nonetheless, when the model tests for whether homes with minor, moderate, substantial, or extreme views of wind turbines have measurably different sales prices, no statistically significant differences are apparent (see Figure ES-3).
- Nuisance Stigma: Finally, for Nuisance Stigma, the model is used to test whether the sales prices of homes situated inside of one mile of the nearest wind energy facility are measurably different from those homes located outside of five miles. Although sample size is somewhat limited in this case,³ the model again finds no persuasive statistical evidence that wind

³ 125 homes were located inside of one mile of the nearest wind facility and sold post-construction.

facilities measurably and broadly impact residential sales prices (see Figure ES-1 and later results).

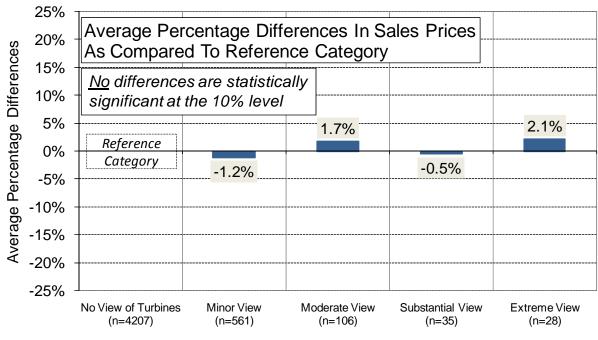

Figure ES-1: Base Model Results: Area and Nuisance Stigma

Figure ES-2: Base Model Results: Scenic Vista

The reference category consists of transactions for homes with an Average Vista, and that occured after construction began on the wind facility

The reference category consists of transactions for homes situated more than five miles from the nearest turbine, and that occured after construction began on the wind facility

The seven alternative hedonic models and the additional analysis contained in the Repeat Sales and Sales Volume Models (see Table ES-2) provide a fuller picture of the three stigmas and the robustness of the Base Model results.

Area Stigma: Other Model Results

Concentrating first on Area Stigma, the results from all of the models are similar: there is no statistical evidence of a widespread Area Stigma among the homes in this sample. Homes in the study areas analyzed here do not appear to be measurably stigmatized by the arrival of a wind facility, regardless of when those homes sold in the wind project development process and regardless of whether the homes are located one mile or five miles away from the nearest facility.

In the All Sales Model, for example, after adjusting for inflation,⁴ homes that sold after wind facility construction and that had no view of the turbines are found to have transacted for higher prices - not lower - than those homes that sold prior to wind facility construction. Moreover, in the Temporal Aspects Model, homes that sold more than two years prior to the announcement of the wind facility and that were located more than five miles from where the turbines were eventually located are found to have transacted for lower prices - not higher - than homes situated closer to the turbines and that sold at any time after the announcement and construction of the wind facility (see Figure ES - 4). Further, in the Repeat Sales Model, homes located near the wind facilities that transacted more than once were found to have appreciated between those sales by an amount that was no different from that experienced by homes located in an area

The reference category consists of transactions for homes without a view of the turbines, and that occured after construction began on the wind facility

⁴ All sales prices in all models are adjusted for inflation, but because this model (and the Temporal Aspects Model) deals with time explicitly, it is mentioned specifically here.

many miles away from the wind facilities. Finally, as shown in Table ES-2, none of the other models identified evidence of a broadly negative and statistically significant Area Stigma.

Scenic Vista Stigma: Other Model Results

With respect to Scenic Vista Stigma, the seven alternative hedonic models and the additional analysis contained in the Repeat Sales Model find little consistent evidence of a broadly negative and statistically significant impact. Although there are 730 residential transactions in the sample that involve homes that had views of a wind facility at the time of sale, 160 of which had relatively significant views (i.e., a rating higher than Minor), none of the various models finds strong statistical evidence that the view of a nearby wind facility impacts sales prices in a significant and consistent manner.

When concentrating only on the view of the wind facilities from a home (and not testing for Area and Nuisance Stigmas simultaneously), for example, the results from the View Stability Model are very similar to those derived from the Base Model, with no evidence of a Scenic Vista Stigma. Similarly, the All Sales Model finds that homes that sold after wind facility construction and that had a view of the facility transacted for prices that are statistically indistinguishable from those homes that sold at any time prior to wind facility construction. The Orientation Model, meanwhile, fails to detect any difference between the sales prices of homes that had either a front, back, or side orientation to the view of the wind facility. As shown in Table ES-2, the Continuous Distance and Temporal Aspects models also do not uncover any evidence of a broadly negative and statistically significant Scenic Vista Stigma.

In the Repeat Sales Model, some limited evidence is found that a Scenic Vista Stigma may exist, but those effects are weak, fairly small, somewhat counter-intuitive, and are at odds with the results of other models. This finding is likely driven by the small number of sales pairs that are located within one mile of the wind turbines and that experience a dramatic view of those turbines. Finally, in the Overlap Model, where the degree to which a view of the wind facility overlaps the primary scenic vista from the home is accounted for, no statistically significant differences in sales prices are detected between homes with somewhat or strongly overlapping views when compared to those homes with wind turbine views that did not overlap the primary scenic vista. Though this model produces some weak evidence of a Scenic Vista Stigma among homes with Views that barely overlap the primary scenic vista are positively impacted by the presence of the wind facility. When these two results are combined, the overall impact is negligible, again demonstrating no persuasive evidence of a Scenic Vista Stigma.

Nuisance Stigma: Other Model Results

Results for Nuisance Stigma from the seven alternative hedonic models and the additional analysis contained in the Repeat Sales and Sales Volume Models support the Base Model results. Taken together, these models present a consistent set of results: homes in this sample that are within a mile of the nearest wind facility, where various nuisance effects have been posited, have not been broadly and measurably affected by the presence of those wind facilities. These results imply that Nuisance Stigma effects are either not present in this sample, or are too small and/or infrequent to be statistically distinguished.

In the Distance Stability Model, for example, when concentrating only on the distance from homes to the nearest wind turbine (and not testing for Scenic Vista Stigma simultaneously), the results are very similar to those derived from the Base Model, with no statistical evidence of a Nuisance Stigma. These results are corroborated by the Continuous Distance, Orientation, Overlap, and Repeat Sales Models, none of which find a statistically significant relationship between distance and either sales prices or appreciation rates. Relatedly, the Sales Volume analysis finds no evidence that homes located within one mile of the nearest wind turbine are sold any more or less frequently than homes located farther away from the wind facilities.

In the All Sales Model, a weakly significant difference is found between the sales prices of homes located between 3000 feet and one mile of the nearest wind facility and the homes that sold before the announcement of the wind facility. This effect, however, is largely explained by the results of the Temporal Aspects Model, shown in Figure ES - 4. The Temporal Aspects Model finds that homes located within one mile of where the wind turbines would eventually be located sold for depressed prices well before the wind facility was even announced or constructed. In all time periods following the commencement of wind facility construction, however, inflation-adjusted sales prices increased - not decreased - relative to pre-announcement levels, demonstrating no statistical evidence of a Nuisance Stigma. The results from the All Sales Model (and, for that matter, the negative, albeit statistically insignificant coefficients inside of one mile in the Base Model, see Figure ES-1) are therefore an indication of sales price levels that preceded wind facility announcement construction, and that are not sustained after construction.

Figure ES - 4: Temporal Aspects Model Results: Area and Nuisance Stigma

The reference category consists of transactions of homes situated more than five miles from where the nearest turbine would eventually be located and that occurred more than two years before announcement of the facility

Conclusions and Further Research Needs

Though each of the analysis techniques used in this report has strengths and weaknesses, the results as a whole are strongly consistent in that none of the models uncovers conclusive evidence of the presence of any of the three property value stigmas that might be present in communities surrounding wind power facilities. Therefore, based on the data sample and analysis presented here, no evidence is found that home prices surrounding wind facilities are consistently, measurably, and significantly affected by either the view of wind facilities or the distance of the home to those facilities. Although the analysis cannot dismiss the possibility that individual homes or small numbers of homes have been or could be negatively impacted, it finds that if these impacts do exist, they are either too small and/or too infrequent to result in any widespread, statistically observable impact. Moreover, to the degree that homes and wind facilities in this sample are similar to homes and facilities in other areas of the United States, the results presented here are expected to be transferable to other areas.

This work builds on the existing literature in a number of respects, but there remain a number of areas for further research. The primary goal of subsequent research should be to concentrate on those homes located closest to wind facilities, where the data sample herein was the most limited. Additional research of the nature reported in this paper could be pursued, but with a greater number of transactions, especially for homes particularly close to wind facilities. A more detailed analysis of sales volume impacts may also be fruitful, as would an assessment of the potential impact of wind facilities on the length of time homes are on the market in advance of an eventual sale. Finally, it would be useful to conduct a survey of those homeowners living close to existing wind facilities, and especially those residents who have bought and sold homes in proximity to wind facilities after facility construction, to assess their opinions on the impacts of wind project development on their home purchase and sales decisions.

1. Introduction

Wind power development has expanded dramatically in recent years (GWEC, 2009). Although the percent of electricity supplied to the U.S. and globally from wind power projects installed through 2008 remains relatively low (1.9% and 1.5%, respectively) (Wiser and Bolinger, 2009), there are expectations that those percentages will rise and that wind energy could contribute a significant percentage of future electricity supply (GWEC, 2008; Wiser and Hand, 2010). Most recently, President Obama, in his 2009 State of the Union address, called for a doubling of renewable energy in three years (by 2012), and in 2008 the U.S. Department of Energy produced a report that analyzed the feasibility of meeting 20% of U.S. electricity demand with wind energy by 2030 (US DOE, 2008).

To meet these goals, a significant amount of wind project development activity would be required. The average size of wind power projects built in the U.S. in 2007 and 2008 was approximately 100 MW (Wiser and Bolinger, 2009) and the total amount of capacity required to reach 20% wind electricity is roughly 300,000 MW (US DOE, 2008). Therefore, to achieve 20% wind electricity by 2030, a total of 3,000 wind facilities may need to be sited and permitted. Most permitting processes in the U.S. require some form of environmental impact assessment, and some form of public involvement in the siting process. Though surveys show that public acceptance is high in general for wind energy (e.g., Wolsink, 2000; Firestone and Kempton, 2006), a variety of concerns are often expressed on the local level that can impact the length and outcome of the siting and permitting process. These concerns range from the potential impacts of wind projects on wildlife habitat and mortality, radar and communications systems, ground transportation and historic and cultural resources, to aesthetic and property value concerns as well as potential nuisance and health impacts. As a result, a variety of siting and permitting guidelines (AWEA, 2008) and impact assessments (NAS, 2007) have been completed.

Surveys of local communities considering wind facilities have consistently ranked adverse impacts on aesthetics and property values in the top tier of concerns (e.g., BBC R&C, 2005; Firestone and Kempton, 2006). Developers of wind energy echo this assessment: they ranked aesthetics and property values as two of the top concerns (first and third respectively) for individuals or communities opposed to wind power development (Paul, 2006). Local residents have even brought suit against a developer over property values (Dale Rankin v. FPL, 2008), and some developers have responded to these concerns by offering "neighbor agreements" that compensate nearby homeowners for the potential impacts of wind projects.

The two concerns of aesthetics and property values are intrinsically linked. It is well established that a home's value will be increased if a high-quality scenic vista is enjoyed from the property (e.g., Seiler et al., 2001). Alternatively, it is reasonable to assume that if a home's scenic vista overlaps with a view of a disamenity, the home might be devalued, as has been found for high-voltage transmission lines (HVTL) (Kroll and Priestley, 1992; Des-Rosiers, 2002). Whether a view of wind turbines similarly impacts home values is a key topic of debate in local siting decisions. Aesthetics alone, however, is not the only pathway through which wind projects might impact residential property values. Distance to the nearest wind turbine, for example, might also have an impact if various nuisance effects are prominent, such as turbine noise,

shadow flicker,⁵ health or safety concerns, or other impacts, real or perceived. In this way, property values near wind turbines might be impacted in the same way as homes near roads might be devalued (Bateman et al., 2001). Additionally, there is evidence that proximity to a disamenity, even if that disamenity is not visible and is not so close as to have obvious nuisance effects, may still decrease a home's sales price, as has been found to be the case for landfills (Thayer et al., 1992).

Taken together, these general concerns about the possible impacts of wind projects on residential property values can be loosely categorized into three potential stigmas:

- Area Stigma: A concern that the general area surrounding a wind energy facility will appear more developed, which may adversely affect home values in the local community regardless of whether any individual home has a view of the wind turbines.
- Scenic Vista Stigma: A concern that a home may be devalued because of the view of a wind energy facility, and the potential impact of that view on an otherwise scenic vista.
- Nuisance Stigma: A concern that factors that may occur in close proximity to wind turbines, such as sound and shadow flicker, will have a unique adverse influence on home values.

These three potential stigmas are not mutually exclusive and could, in theory, be present in part or in combination for any single home. Consequently, all three potential impacts must be considered when analyzing the effects of wind facilities on residential sales prices.

Although concerns about the potential impact of wind projects on residential property values are often mentioned in siting cases, the state of the existing literature on this topic leaves much to be desired. To some extent, the growing body of research investigating this topic has come to opposing conclusions. The most recent and comprehensive of these studies have often concluded that no widespread impacts of wind projects on residential property values are apparent (Hoen, 2006; Sims and Dent, 2007; Sims et al., 2008). At the same time, pre-construction surveys of both homeowners and real estate experts have sometimes found an expectation of negative impacts (e.g. Haughton et al., 2004), and post-construction appraisals have sometimes come to similar conclusions (McCann, 2008; Kielisch, 2009). Given the state of the literature, it is not uncommon for local siting and permitting processes to involve contradicting testimony from experts, as occurred in 2004 when the Public Service Commission of Wisconsin heard opposing conclusions from two studies conducted by experienced home valuation experts (Poletti, 2005; Zarem, 2005).

This report contains the most comprehensive and data-rich analysis to date on the potential impacts of wind projects on nearby residential sales prices. Data from 7,459 residential transactions were collected from the surrounding communities of 24 individual wind projects in nine states and 14 counties in the United States.⁶ Because of the large sample size, the diversity of wind projects included in the analysis, and the depth of information collected, a number of different analyses were possible. Specifically, this report relies heavily on a hedonic regression

⁵ Shadow flicker occurs when the sun shines through the wind turbine blades when at a low angle to the horizon and shadows are cast on a window or interior wall of a residence (NAS, 2007).

⁶ The majority of the analysis only includes homes that sold after wind facility construction began, totaling 4,937 transactions.

model⁷ and uses various forms of that model to investigate potential effects and to confirm the robustness of the resulting findings. To further investigate the robustness of the results, a repeat sales model⁸ and a sales volume model⁹ are also utilized. In sum, this work builds and improves on the previous literature, and provides an in-depth assessment of the question of whether residential property values in the United States have been affected, in a statistically measurable way, by views of and proximity to wind power facilities.

The remainder of this report is structured as follows. The next section discusses the hedonic model in general, its application to environmental disamenities research, and some potentially analogous results drawn from these studies. This is followed by a summary of the existing literature that has investigated the effects of wind energy on residential property values. The report then turns to the data used in the analysis, a discussion of the primary (or "base") hedonic model, and an analysis of the results from that statistical model. Following that, a set of alternative hedonic models are estimated, as well as a repeat sales model and sales volume model, to test for the robustness of the "base" model results and to explore other aspects of the data. Taking into account the full set of results presented earlier, the report then discusses the three stigmas that may lead to wind projects impacting residential property values, and summarizes how the analysis informs the existence and magnitude of these potential effects. The report ends with a brief conclusion, and a discussion of future research possibilities. A number of appendices follow the conclusion, and contain detailed information on each wind project study area, the data collection instrument and qualitative rating systems used in the field research, the investigation of the best "base" model, the hedonic model assumptions and related tests, and full results from all of the additional statistical models estimated in the report.

⁷ The hedonic regression model, which was briefly described in a sidebar in the Executive Summary, is described in detail in Section 2.1.

⁸ A repeat sales model uses, as its dataset, only those homes that have sold more than once. By comparing annual appreciation rates of homes that sold once before facility announcement, and again after construction, it can be tested, in an alternative fashion, if home values are affected by the distance to or view of nearby wind turbines.

⁹ Sales volume can be defined as the percentage of homes that fit a certain criteria (e.g. single family, on less than 25 acres, zoned residential, assessed for more than \$10,000) that actually did sell. By comparing sales volumes at various distances to wind facilities, before and after the facility was built, a further robustness test is possible.

2. Previous Research

Hedonic pricing models are frequently used to assess the marginal impacts of house and community characteristics on sales prices and by extension on property values in general. Because the hedonic model is the primary statistical method used in this report, this section begins by describing the model in more detail and providing some relevant examples of its use. The section then reviews the existing literature on the effects of wind energy facilities on surrounding property values, highlights the shortcomings of that literature, and outlines how the present research addresses those shortcomings.

2.1. Hedonic Models and Environmental Disamenities

A house can be thought of as a bundle of characteristics (e.g., number of square feet, number of bathrooms, number of fireplaces, and amount of acreage). When a price is agreed upon between a buyer and seller there is an implicit understanding that those characteristics have value. When data from a number of sales transactions are available, the individual marginal contribution to the sales price of each characteristic can be estimated with a hedonic regression model (Rosen, 1974; Freeman, 1979). This relationship takes the basic form:

Sales price = f (house structural characteristics, other factors)

where "house structural characteristics" might include, but are not limited to, the number of square feet of living area, bathrooms, and fireplaces, the presence of central AC and the condition of the home, and "other factors" might include, but are not limited to, home site characteristics (e.g., number of acres), neighborhood characteristics (e.g., school district), market conditions at the time of sale (e.g., prevailing mortgage interest rates), and surrounding environmental conditions (e.g., proximity to a disamenity or amenity).

The relationship between the sales price of homes and the house characteristics and other factors can take various forms. The most common functional form is the semi-log construction where the dependent variable is the natural log of the inflation adjusted sales price, and the independent variables are unadjusted (not transformed) home characteristics and other factors. The usefulness of this form of hedonic model is well established (Malpezzi, 2003; Sirmans et al., 2005b; Simons and Saginor, 2006) assuming that certain threshold assumptions are met.¹⁰ The model is used commonly by academics, real estate assessors, appraisers, and realtors when large datasets are available on past residential sales transactions, and when estimates of the marginal impact of certain house characteristics and other factors on sales prices are desired.¹¹

¹⁰ These assumptions, which are discussed in greater detail in Section 4.2 and Appendix G, include absence of outliers and/or influencers, presence of homoskedastic variances, absence of spatial and temporal autocorrelation, and absence of collinearity between the variables of interest and other independent variables.

¹¹ It should be emphasized that a hedonic model is not designed to appraise properties (i.e., to establish an estimate of the market value of a home at a specified point in time), as would be done with an automated valuation model (AVM). Rather, hedonic models are designed to estimate the marginal contribution of individual house or community characteristics to sales prices, which requires hedonic models to rely upon large data sets with a sizable number of explanatory variables. Appraisal models, on the other hand, are generally based on small, localized data sets (i.e., "comps") and a limited number of explanatory variables that pertain to nearby properties. Due to their higher level of accuracy through the use of significantly more information (e.g., diverse spatial, temporal, and

A particularly useful application of the hedonic regression model is to value non-market goods – goods that do not have transparent and observable market prices. For this reason, the hedonic model is often used to derive value estimates of amenities such as wetlands (e.g., Mahan et al., 2000) or lake views (e.g., Seiler et al., 2001), and disamenities, such as proximity to and/or views of high-voltage transmission lines (HVTLs) (e.g. Des-Rosiers, 2002), fossil fuel power plants (Davis, 2008), roads (e.g. Bateman et al., 2001), cell phone towers (e.g. Bond and Wang, 2007), and landfills (e.g., Thayer et al., 1992; Ready and Abdalla, 2005).

There are a number of useful reviews that describe the application of hedonic models in these circumstances (Kroll and Priestley, 1992; Farber, 1998; McCann, 1999; Bateman et al., 2001; Boyle and Kiel, 2001; Jackson, 2001; Ready and Abdalla, 2005; Simons and Saginor, 2006; Simons, 2006b; Leonard et al., 2008).¹² The large number of studies covered in these reviews demonstrate that hedonic models are regularly used to investigate the interplay between home values and distance to potential disamenities, teasing out if and how sales prices are adversely affected depending on the distance of a typical home from a disamenity. For example, Carroll et al. (1996) use a hedonic model to estimate a devaluation of 16% for homes "close to" a chemical plant, with a 6.5% increase in sales price per mile away out to 2.5 miles, at which point effects fade entirely. Dale et al. (1999) find a maximum effect of -4% near a lead smelter, with sales prices increasing 2% for each mile away out to two miles, where effects again fade. Ready and Abdalla (2005) find maximum effects near landfills of -12.4%, which fade entirely outside 2,400 feet, and maximum effects near confined animal feeding operations of -6.4%, which fade entirely outside of 1,600 feet. Meanwhile, studies of other energy infrastructure, such as HVTLs, find maximum effects of -5.7% for homes adjacent to a HVTL tower, and an increase in prices of 0.018% per foot away from the tower out to 300 feet (Hamilton and Schwann, 1995), and maximum effects of -14% for homes within 50 feet of a HVTL, but no effect for similar homes at 150 feet (Des-Rosiers, 2002). Further, for fossil fuel power plants, Davis (2008) finds average adverse effects of between 3 and 5% inside of two miles but that those effects fade entirely outside of that distance range.

In addition to investigating how sales prices change with distance to a disamenity, hedonic models have been used to investigate how prices have changed over time. For instance, sales prices have sometimes been found to rebound after the removal of a disamenity, such as a lead smelter (Dale et al., 1999), or to fade over time, as with HVTLs (Kroll and Priestley, 1992) or spent fuel storage facilities (Clark and Allison, 1999). Finally, hedonic models have been used to estimate how views of a disamenity affect sales prices. Des-Rosiers (2002), for example, finds that homes adjacent to a power line and facing a HVTL tower sell for as much as 20% less than similar homes that are not facing a HVTL tower.

characteristic information) and rigorous methodology, hedonic models can also be used as appraisal models. Automated valuation models cannot, however, be reliably used to measure marginal effects because they do not employ sufficient information to do so, and, more importantly, AVMs do not hold controlling characteristics constant, which could bias any resulting estimates of marginal effects.

¹² For further discussion of the hedonic model and its application to the quantification of environmental stigmas in comparison to other methods see Jackson (2005).

It is unclear how well the existing hedonic literature on other disamenities applies to wind turbines, but there are likely some similarities. For instance, in general, the existing literature seems to suggest that concerns about lasting health effects provide the largest diminution in sales prices, followed by concerns for one's enjoyment of the property, such as auditory and visual nuisances, and that all effects tend to fade with distance to the disamenity - as the perturbation becomes less annoying. This might indicate that property value effects from wind turbines are likely to be the most pronounced quite close to them, but fade quickly as their auditory and visual impacts fade. The existing hedonic literature also, in general, finds that effects fade with time as self-selecting buyers without prejudice towards the disamenity move into the area, or as the real or perceived risks of the disamenity are lessoned (Jackson, 2001). This implies that any stigmas related to wind turbines might also fade over time as local communities come to accept their presence.

2.2. Impacts of Wind Projects on Property Values

Turning to the literature that has investigated the potential property value effects from wind facilities directly, it deserves note that few studies have been academically peer-reviewed and published; in some cases, the work has been performed for a party on one side or the other of the permitting process (e.g., the wind developer or an opposition group). Nonetheless, at a minimum, a brief review of this existing literature will set the stage for and motivate the later discussion of the methods and results of the present work. The literature described below is summarized in Table 1. To frame this discussion, where possible, the three potential stigmas discussed earlier are used:

- Area Stigma: A concern that the general area surrounding a wind energy facility will appear more developed, which may adversely affect home values in the local community regardless of whether any individual home has a view of the wind turbines.
- Scenic Vista Stigma: A concern that a home may be devalued because of the view of a wind energy facility, and the potential impact of that view on an otherwise scenic vista.
- Nuisance Stigma: A concern that factors that may occur in close proximity to wind turbines, such as sound and shadow flicker, will have a unique adverse influence on home values.

In one of the most recent studies, Sims et al. (2008) used a hedonic model to investigate Scenic Vista Stigma using 199 residential transactions within ¹/₄ of a mile of the 16-turbine Bears Down wind facility in Cornwall, UK. They found both large positive and smaller negative significant relationships between views of the turbines and sales prices depending on whether the view is seen from the front or rear of the home, respectively, but found no relationship between the number of wind turbines visible and sales prices. Previously, Sims and Dent (2007) used a hedonic model to investigate Nuisance and Scenic Vista Stigma with 919 transactions for homes within five miles of two wind facilities in the UK, finding only limited evidence of a relationship between proximity to and views of turbines and sales prices, which local real estate experts attributed to other causes. Hoen (2006) investigated Scenic Vista Stigma using a hedonic model to analyze 280 residential transactions occurring near a wind facility in Madison County, NY, and found no evidence that views of turbines significantly affects prices. Jordal-Jorgensen (1996) investigated Nuisance Stigma in Denmark, and found an adverse effect for homes located "close" to the turbines, but no statistical significance was reported.¹³

¹³ A copy of this report could not be obtained and therefore its findings are reported based on other citations.

Using different statistical methods, Poletti (2005; 2007) used a *t*-Test to investigate Nuisance and Area Stigma by comparing the mean sales prices of 187 and 256 homes in Illinois and Wisconsin, respectively, located near wind facilities (target group) to those further away (control group).^{14, 15} He split these target and control groups into respective smaller and more-homogenous sub-groups, such as large and small tracts, with and without homes, finding no statistical evidence that homes near the wind facilities sold for different prices than those farther away. Sterzinger et al. (2003) analyzed roughly 24,000 residential transactions, which were divided between those within five miles of a wind facility and those outside of five miles in an effort to assess Area Stigma. They compared residential appreciation rates over time, and found no apparent difference between those homes within and outside of five miles from a wind facility, but the statistical significance of this comparison was not reported.

Other authors have used smaller samples of residential transactions and a variety of simple statistical techniques, without reporting statistical significance, and have found a lack of evidence of effects from Nuisance Stigma (Jerabek, 2001; Jerabek, 2002; Beck, 2004) and Area Stigma (DeLacy, 2005; Goldman, 2006). These results, however, are somewhat contrary to what one appraiser has found. In his investigation of Nuisance Stigma around a wind facility in Lee County, IL, McCann (2008) found that two homes nearby a wind facility had lengthy selling periods that, he believes, also adversely affected transaction prices. Additionally, Kielisch (2009) investigated Nuisance Stigma by comparing twelve transactions of undeveloped land near two wind facilities in Wisconsin (Blue Sky Green Field and Forward) to undeveloped land transactions farther away. He found that land tracts near the wind facilities sold for dramatically lower prices (\$/acre) than the comparable group, but the statistical significance of the comparison was not reported.

In addition to these revealed preference studies, a number of stated preference surveys (e.g., contingent valuation) and general opinion surveys have investigated the existence of potential effects.¹⁶ A survey of <u>local residents</u>, conducted after the wind facilities were erected, found no evidence of Area Stigma (Goldman, 2006), while another found limited evidence of these stigmas (Bond, 2008).¹⁷ Similarly, some surveys of <u>real estate experts</u> conducted after facility

 ¹⁴ A *t*-Test is used to compare two sample means by discerning if one is significantly different from the other.
 ¹⁵ The 2007 study used the data contained in the 2005 study in combination with new data consisting of transactions

that occurred in the interim period.

¹⁶ Contingent valuation is a survey based technique to value non-market goods (e.g., an environmental disamenity) that asks respondents what their "willingness to pay" (or "willingness to accept") is to have, for instance, a disamenity removed from (or to have it remain in) their neighborhood. This technique is distinct from a general opinion survey, which might ask whether respondents believe property values have been impacted by an environmental disamenity and, if so, "by how much." Although there are important distinctions between the two techniques, with the contingent valuation method often preferred by economic practitioners, for simplicity no distinction is made here between these two approaches. Finally, another subset of the survey literature focuses on public acceptance (i.e., opinion). Though these public acceptance surveys sometimes cover possible impacts on property values, those impacts are not quantified in economic terms. As a result, public acceptance survey results are not reported here.

¹⁷ Bond (2008) asked respondents to declare if the wind facility, which is located roughly 7 miles away, would effect what they would be willing to pay for their house and 75% said either they would pay the same or more for their house, while the remainder would pay less. When those latter respondents were asked to estimate the percentage difference in value, their estimates averaged roughly 5%.

construction have found no evidence of Area or Nuisance Stigmas (Grover, 2002; Goldman, 2006). These results, however, are contrary to the expectations for Area, Scenic Vista, and Nuisance Stigma effects predicted by local residents (Haughton et al., 2004; Firestone et al., 2007) and real estate experts (Haughton et al., 2004; Khatri, 2004; Kielisch, 2009) prior to construction found elsewhere.¹⁸ The difference between predicted and actual effects <u>might</u> be attributable, at least in part, to the fear of the unknown. For instance, Wolsink (1989) found that public attitudes toward wind power, on average, are at their lowest for local residents during the wind project planning stage, but return almost to pre-announcement levels after the facilities are built. This result is echoed by Exeter-Enterprises-Ltd. (1993) and Palmer (1997), whose post-construction surveys found higher approval than those conducted pre-construction. Others, however, have found that perceptions do not always improve, attributing the lack of improvement to the perceived "success" or lack therefore of the project, with strong disapproval forming if turbines sit idle (Thayer and Freeman, 1987) or are perceived as a waste of taxpayer dollars (Devine-Wright, 2004).

When this literature is looked at as a whole, it appears as if wind projects have been predicted to negatively impact residential property values when pre-construction surveys are conducted, but that sizable, widespread, and statistically significant negative impacts have largely failed to materialize post-construction when actual transaction data become available for analysis. The studies that have investigated Area Stigma with market data have failed to uncover any pervasive effect. Of the studies focused on Scenic Vista and Nuisance Stigmas, only one is known to have found statistically significant adverse effects, yet the authors contend that those effects are likely driven by variables omitted from their analysis (Sims and Dent, 2007). Other studies that have relied on market data have sometimes found the possibility of negative effects, but the statistical significance of those results have rarely been reported.

Despite these findings, the existing literature leaves much to be desired. First, many studies have relied on surveys of homeowners or real estate professionals, rather than trying to quantify real price impacts based on market data. Second, a number of studies conducted rather simplified analyses of the underlying data, potentially not controlling for the many drivers of residential sales prices. Third, many of the studies have relied upon a very limited number of residential sales transactions, and therefore may not have had an adequate sample to statistically discern any property value effects, even if effects did exist. Fourth, and perhaps as a result, many of the studies did not conduct, or at least have not published, the statistical significance of their results. Fifth, when analyzed, there has been some emphasis on Area Stigma, and none of the studies (Hoen, 2006; Sims and Dent, 2007; Sims et al., 2008; Kielisch, 2009) conducted field visits to the homes to assess the quality of the scenic vista from the home, and the degree to which the wind facility might impact that scenic vista. Finally, with two exceptions (Sims and Dent, 2007; Sims et al., 2008), none of the studies have been academically peer-reviewed and published.

¹⁸ It should be noted that the samples used by both Khatri and Kielisch contained a subset of respondents who did have some familiarity with valuing homes near wind facilities.

·			-	<u> </u>		
Document Type Author(s)	Year	Number of Transactions or Respondents	Before or After Wind Facility Construction Commenced	Area Stigma	Scenic Vista Stigma	Nuisance Stigma
Homeowner Survey						
Haughton et al.	2004	501	Before	- *	- *	
Goldman	2006	50	After	none		
Firestone et al.	2007	504	Before	- *	- *	
Bond	2008	~300	After		- ?	- ?
Expert Survey						
Grover	2002	13	After	none		none
Haughton et al.	2002	45	Before	- *	_ *	none
Khatri	2004	405	Before [‡]	- ?		- ?
Goldman	2006	50	After	none		none
Kielisch	2009	57	Before [‡]	none		- ?
	•	•	201010			
Transaction Analysis			A. C.			
Jerabek	2001	25	After			none
Jerabek	2002	7	After			none
Sterzinger et al.	2003	24,000	After	none		
Beck	2004	2	After			none
Poletti	2005	187	After	none		none
DeLacy	2005	21	Before [†]	none		
Goldman	2006	4	After	none		
Poletti	2007	256	After	none		none
McCann	2008	2	After			- ?
Kielisch	2009	103	After			- ?
Transaction Analysis	s - Hedonic M	<u>Iodel</u>				
Jordal-Jorgensen	1996	?	After			- ?
Hoen	2006	280	After		none	
Sims & Dent	2007	919	After			- *
Sims et al.	2008	199	After		-/+ *	
"none" indicates the	majority of th	ne respondents do	not believe proper	ties have bee	en affected (for surveys)
or that no effect was d						
"- ?" indicates a nega	tive effect wit	hout statistical sig	nificance provided	ł		
			at 10% significan			
				· · · · · ·		
"-/+ *" indicates posi				10% signifi	cance level	
"-/+ *" indicates posi † Sales were collected	itive and nega	tive statistically si	gnificant effects at		cance level	

Table 1: Summary of Existing Literature on Impacts of Wind Projects on Property Values

3. Data Overview

The methods applied in the present work are intended to overcome many of the limitations of the existing literature. First, a large amount of data is collected from residential transactions within 10 miles of 24 different wind projects in the U.S., allowing for a robust statistical analysis across a pooled dataset that includes a diverse group of wind project sites. Second, all three potential stigmas are investigated by exploring the potential impact of wind projects on home values based both on the distance to and view of the projects from the homes. Third, field visits are made to every home in the sample, allowing for a solid assessment of the scenic vista enjoyed by each home and the degree to which the wind facility can be seen from the home, and to collect other value-influencing data from the field (e.g., if the home is situated on a cul-de-sac). Finally, a number of hedonic regression models are applied to the resulting dataset, as are repeat sales and sales volume analyses, in order to assess the robustness of the results.

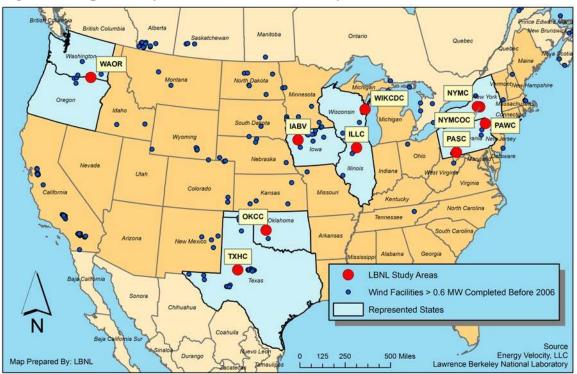
Testing for the three potential stigmas requires a significant sample of residential transactions within close proximity to existing wind facilities. Unfortunately for the study, most wind power projects are not located near densely populated areas. As a result, finding a single wind project site with enough transaction data to rigorously analyze was not possible. Instead, the approach was to collect data from multiple wind project sites, with the resulting data then pooled together to allow for robust statistical analyses.¹⁹ The remainder of this section describes the site selection process that is used, and provides a brief overview of both the selected study areas and the data that were collected from these areas. Also provided is a description of how scenic vista, views of turbines, and distances from turbines were quantified for use in the hedonic analysis, and a summary of the field data collection effort. The section ends with a brief summary of the resulting dataset.

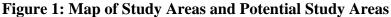
3.1. Site Selection

For the purpose of this study, an ideal wind project area would:

- 1) Have a large number of residential transactions both before and, more importantly, after wind facility construction, and especially in close proximity (e.g., within 2 miles) of the facility;
- 2) Have comprehensive data on home characteristics, sales prices, and locations that are readily available in electronic form; and
- 3) Be reasonably representative of the types of wind power projects being installed in the United States.

To identify appropriate sites that met these criteria, and that also provided a diversity of locations, the authors obtained from Energy Velocity, LLC a set of Geographic Information System (GIS) coordinates representing 241 wind projects in the U.S. that each had a total nameplate capacity greater than 0.6 megawatts (MW) and had gone online before 2006.²⁰ Also provided were facility capacity, number of turbines, and announcement, construction, and operational dates. These data were cross-checked with a similar dataset provided by the American Wind Energy Association (AWEA), which also included some turbine hub-height information.


¹⁹ A thorough discussion of this "pooled" approach is contained in Section 4.2 and in Appendix F.


²⁰ Energy Velocity, LLC was owned at the time by Global Energy Decisions, which was later purchased by Ventyx. The dataset is available as Velocity Suite 2008 from Ventyx.

By using a variety of different GIS sorting techniques involving nearby towns with populations greater than, for example, 2,500 people, using census tract population densities, and having discussions with wind energy stakeholders, a prospective list of 56 possible study areas was generated, which were then ranked using two scales: "highly desirable" to "least desirable," and "feasible" to "potentially unfeasible."²¹ Then, through an iterative process that combined calls to county officials to discuss the number of residential transactions and data availability, with investigations using mapping software to find the location of individual wind turbines, and, in some cases, preliminary visits, a list of 17 prospective study areas were chosen as both "highly desirable" and "feasible." Ultimately, three of these proved to be "unfeasible" because of data availability issues and four "undesirable" because the study area was considered not representative. This effort ultimately resulted in a final set of ten study areas that encompass a total of 24 distinct wind facilities (see Figure 1 and Table 2).²² A full description of each study area is provided in Appendix A.

²¹ "Desirability" was a combination of a number of factors: the wind facility having more than one turbine; the study area having greater than 350 sales within 5 miles and within 10 years, 250 of which transacted following construction of the facility; having some transaction data old enough to pre-date facility announcement; having data on the core home and site characteristics (e.g., square feet, acres); and, where possible, having a concentration of sales within 1 mile of the facility. "Feasibility" was also a combination of factors: having home characteristic and sales data in electronic form; having GIS shapefiles of the parcel locations; and being granted ready access to this information.

²² The "unfeasible" study areas were Cerro Gordo County, IA, Bennington County, VT, and Atlantic County, NJ. Cerro Gordo County, IA contained multiple wind projects totaling 140 MW. Although the data at this site were available in electronic form, the county only agreed to share data in paper form, which would have created an enormous data entry burden. Because another site in the sample was considered similar to the Cerro Gordo site (IABV), Cerro Gordo County was dropped from the prospective sites. Bennington County, VT contained the 11 turbine Searsburg Wind Project (6 MW) but had no electronic records. Atlantic County, NJ contained the five turbine Jersey Atlantic Wind Farm (7.5 MW), but had data in paper records only and the county was unresponsive to inquiries regarding the study. The "undesirable" study areas were Plymouth County, MA, Wood County, OH, Cascade County, MT, and Riverside County, CA. Although the data in Plymouth County, MA were more than adequate, this small, on-land, yet coastal Hull Wind facility (2 turbines, 2.5 MW) was not considered to be particularly representative of wind development across the US. Wood County's four turbine Bowling Green facility (7 MW) met the appropriate data requirements, but ultimately it was decided that this facility was too small and remote to be representative. Cascade County's six turbine Horseshoe Bend Wind Park (9 MW) did not have enough transactions to justify study. Riverside, CA, where roughly 2500 turbines are located, had less-than-desired home characteristic data, had transactions that came more than 10 years after large scale development began, and despite having homes that were within 1 mile of the turbines, those homes typically had limited views because of high subdivision walls.

Study Area Code	Study Area Counties, States	Facility Names	Number of Turbines	Number of MW	Max Hub Height (meters)	Max Hub Height (feet)
WAOR	Benton and Walla Walla Counties, WA and Umatilla County, OR	Vansycle Ridge, Stateline, Nine Canyon I & II, Combine Hills	582	429	60	197
ТХНС	Howard County, TX	Big Spring I & II	46	34	80	262
OKCC	Custer County, OK	Weatherford I & II	98	147	80	262
IABV	Buena Vista County, IA	Storm Lake I & II, Waverly, Intrepid I & II	381	370	65	213
ILLC	Lee County, IL	Mendota Hills, GSG Wind	103	130	78	256
WIKCDC	Kewaunee and Door Counties, WI	Red River, Lincoln	31	20	65	213
PASC	Somerset County, PA	Green Mountain, Somerset, Meyersdale	34	49	80	262
PAWC	Wayne County, PA	Waymart	43	65	65	213
NYMCOC	Madison and Oneida Counties, NY	Madison	7	12	67	220
NYMC	Madison County, NY	Fenner	20	30	66	218
		TOTAL	1345	1286		

These 10 study areas and 24 projects are located in nine separate states, and include projects in the Pacific Northwest, upper Midwest, the Northeast, and the South Central region. The wind projects included in the sample total 1,286 MW, or roughly 13% of total U.S. wind power capacity installed at the time (the end of 2005). Turbine hub heights in the sample range from a

minimum of 164 feet (50 meters) in the Washington/Oregon (WAOR) study area, to a maximum of 262 (80 meters) (TXHC, OKCC and PASC), with nine of the ten study areas having hub heights of at least 213 feet (65 meters). The sites include a diverse variety of land types, including combinations of ridgeline (WAOR, PASC, and PAWC), rolling hills (ILLC, WIKCDC, NYMCOC, and NYMC), mesa (TXHC), and windswept plains (OKCC, IABV).²³

3.2. Data Collection

In general, for each study area, residential transaction data in as close proximity to the wind turbines as possible was sought, from both before and after wind facility construction. To balance the cost and quantity of data collection in each study area with the desire to cover as many study areas as possible, the research effort sought to collect data on 400 to 1,250 transactions in each study area.²⁴ In some instances, this meant including all residential transactions within ten miles of the wind turbines. In others, only transactions within five miles were included. In some extreme instances, when the number of transactions inside of five miles far exceeded the 1,250 limit, all transactions in close proximity to the wind turbines (e.g., inside three miles) were included in combination with a random sample of transactions outside of that distance band (e.g., between three and five miles).²⁵ The data selection processes for each Study Area are contained in Appendix A.

Three primary sets of data are used in the analysis: tabular data, GIS data, and field data, each of which is discussed below. Following that, this subsection highlights the two qualitative variables that are essential to this analysis and that therefore require special attention, scenic vista and views of turbines, and then discusses the field data collection process.

3.2.1. Tabular Data

Berkeley Lab obtained tabular transaction data from participating counties²⁶ containing 7,459 "valid" ²⁷ transactions of single family residential homes, on less than 25 acres,²⁸ which were

²³ Some areas, such as PASC, had both a ridgeline and rolling hills on which wind facilities were located.

²⁴ This range was chosen to ensure that a minimum of data were present in each study area to allow for a robust analysis, and yet not too much so as to make data collection (e.g., the visiting of each home) inordinately time and resource consuming in any individual study area.

²⁵ An alternative method would have been to collect data on every sale that occurred. Although in most cases this would be preferred, in ours it would <u>not</u> have added one additional transaction within close proximity or with dramatic views of wind turbine, the focus of the study. Rather, it would have added an overwhelming majority of transactions of homes without views and at distances outside of three miles from the turbines, all of which would have come at considerably cost and, more importantly, would not likely have influenced the results significantly while perhaps necessitating a reduction in the total number of study areas that could be included in the sample.

²⁶ In some cases, the county officials, themselves, extracted data from their database, and in some cases a company engaged to manage a county's data provided the necessary information. In either case the provider is referred to as "county." Detailed descriptions of the providers are presented in Appendix A.

²⁷ Validity was determined by each individual county data provider. A sale that is considered "valid" for county purposes would normally meet the minimum requirements of being arm's length; being a transfer of all rights and warrants associated with the real estate; containing an insignificant amount of personal property so as not to affect the price; demonstrating that neither party in the sale acting under duress or coercion; not being the result of a liquidation of assets or any other auction, a mortgage foreclosure, a tax sale, or a quit claim; and being appropriate for use in calculating the sales price to assessed value ratios that are reported to the state. Due to the formal requirements associated with this calculation, "validity" is often defined by a state's Department of Revenue, as shown, for example, here: <u>http://www.orps.state.ny.us/assessor/manuals/vol6/rfv/index.htm</u>. In addition, though the

sold for a price of more than \$10,000,²⁹ which occurred after January 1, 1996,³⁰ and which had fully populated "core" home characteristics. These core characteristics are: number of square feet of the living area (not including finished basement), acres of land, bathrooms, and fireplaces, the year the home was built,³¹ if the home had exterior wallsthatwere stone, a central air conditioning unit, and/or a finished basement, and the exterior condition of the home. The 7,459 residential transactions in the sample consist of 6,194 homes (a number of the homes in the sample sold more than once in the selected study period). Because each transaction had a corresponding set of the core home characteristic data, they could all be pooled into a single model. In addition to the home characteristic data, each county provided, at a minimum, the home's physical address and sales price. The counties often also provided data on homes in the study area that did not sell in the study period.³² Finally, market-specific quarterly housing inflation indexes were obtained from Freddie Mac, which allowed nominal sales prices to be adjusted to 1996 dollars.³³

sample originally contained 7,498 sales, 34 homes sold twice in a 6 month period and, after discussions with local officials, these transactions were considered likely to have been "invalid" despite the county coding them to the contrary. Additionally, five transactions produced standardized residuals that were more than six standard deviations away from the mean, indicating that these sales were abnormal and likely not valid. Both of these sets of transactions, totaling 39, were removed from the final dataset. Of the 39 sales, 32 sold following construction, 10 were concentrated in IABV and nine in TXHC with the others spread between seven of the remaining eight study areas. One of the homes was inside of one mile from the turbines at the time of sale, and two had views of the turbines (both of which were MINOR). The home that was located within one mile was surrounded by a number of other homes - at similar distances from the turbines - that transacted both before and after the wind facilities were built and were included in the sample. A more thorough discussion of the screening techniques used to ensure the appropriateness of the final data set are presented in detail in Appendix G under "Outliers/Influencers." Finally, it should be noted that the authors are aware of four instances in the study areas when homes were sold to wind developers. In two cases the developer did not resell the home; in the other two, the developer resold the home at a lower price than which it was purchased. But, because the sales were to a related party, these transactions were not considered "valid' and are therefore not included here. One might, however, reasonably expect that the property values of these homes were impacted by the presence of the wind turbines.

²⁸ Single family residences on more than 25 acres were considered to be likely candidates for alternative uses, such as agricultural and recreational, which could have an influence on sales price that was outside of the capabilities of the model to estimate. Because all records were for parcels that contained a residence, the model did not contain any "land-only" transactions. Further, none of the transactions provided for this research were for parcels on which a turbine was located.

²⁹ A sales price of \$10,000 was considered the absolute minimum amount an improved parcel (one containing a residential structure) would sell for in any of the study areas and study periods. This provided an additional screen over and above the "valid" screen that the counties performed.

³⁰ This provided a maximum of 12 years of data. Some counties did not have accessible data back to 1996 but in all cases these countries had data on transactions that occurred before the wind facilities were erected.

³¹ "Year Built" was used to construct a variable for the age of the home at the time of the sale.

³² These data were used to calculate the "Sales Volume" percentages referred to in Section 7.

³³ Freddie Mac Conventional Mortgage Home Price Index: municipal statistical area (MSA) series data are available from the following site: <u>http://www.freddiemac.com/finance/cmhpi/</u>. Because most of the study areas do not fall within the MSAs, a collection of local experts was relied upon, including real estate agents, assessors, and appraisers, to decide which MSA most-closely matched that of the local market. In all cases the experts had consensus as to the best MSA to use. In one case (NYMCOC) the sample was split between two MSAs. These indexes are adjusted quarterly, and span the entire sample period. Therefore, during the housing boom, insofar as a boom occurred in the sample areas, the indexes increased in value. Subsequently when the market began falling, the index retracted.

3.2.2. GIS Data

GIS data on parcel location and shape were also required, and were obtained from the counties. The counties also often provided GIS layers for roads, water courses, water bodies, wind turbines (in some cases), house locations, and school district and township/town/village delineations. GIS data on census tract and school district delineations were obtained from the U.S. Census Bureau, if not provided by the county.³⁴ GIS data were obtained on water courses, water bodies, land elevations, and satellite imagery, as was necessary, from the U.S. Department of Agriculture.³⁵ Combined, these data allowed each home to be identified in the field, the construction of a GIS layer of wind turbine locations for each facility, and the calculation of the distance from each home to the nearest wind turbine.³⁶ Determining the distance from each home to the nearest wind turbine was a somewhat involved process, and is discussed in detail in Appendix B. Suffice it to say that each transaction had a unique distance ("DISTANCE")³⁷ that was determined as the distance between the home and nearest wind turbine at the time of sale, and that these distances are grouped into five categories: inside of 3000 feet (0.57 miles), between 3000 feet and one mile, between one and three miles, between three and five miles, and outside of five miles.³⁸ Finally, the GIS data were used to discern if the home was situated on a cul-de-sac and had water frontage, both of which were corroborated in the field.

3.2.3. Field Data

Additional data had to be collected through field visits to all homes in the sample. Two qualitative measures in particular – for scenic vista and for view of the wind turbines – are worth discussing in detail because each is essential to the analysis and each required some amount of professional judgment in its creation.

The impact or severity of the view of wind turbines ("VIEW")³⁹ may be related to some combination of the number of turbines that are visible, the amount of each turbine that is visible (e.g., just the tips of the blades or all of the blades and the tower), the distance to the nearest turbines, the direction that the turbines are arrayed in relation to the viewer (e.g., parallel or perpendicular), the contrast of the turbines to their background, and the degree to which the turbine arrays are harmoniously placed into the landscape (Gipe, 2002). Recent efforts have made some progress in developing quantitative measures of the aesthetic impacts of wind turbines (Torres-Sibillea et al., 2009),⁴⁰ but, at the time this project began, few measures had

³⁴ These data were sourced from the U.S. Census Bureau's Cartographic Boundary Files Webpage: <u>http://www.census.gov/geo/www/cob/bdy_files.html</u>.

³⁵ These data were sourced from the USDA Geospatial Data Gateway: <u>http://datagateway.nrcs.usda.gov/GatewayHome.html</u>.

³⁶ Although in some cases the county provided a GIS layer containing wind turbine points, often this was not available. A description of the turbine mapping process is provided in Appendix B.

³⁷ Distance measures are collectively and individually referred to as "DISTANCE" from this point forward.

³⁸ The minimum distance of "inside 3000 feet" was chosen because it was the closest cutoff that still provided an ample supply of data for analysis.

³⁹ View of turbines ratings are collectively and individually referred to as "VIEW" from this point forward.

⁴⁰ In addition to these possible field techniques, previous studies have attempted to use GIS to estimate wind turbine visibility using "line-of-sight" algorithms. For example, Hoen (2006) used these algorithms after adding ground cover to the underlying elevation layer. He found that the GIS method differed substantially from the data collected in the field. Seemingly, small inaccuracies in the underlying elevation model, errors in the software's algorithm, and the existence of ground cover not fully accounted for in the GIS, substantially biased GIS-based assessments of

been developed, and what had been developed was difficult to apply in the field (e.g., Bishop, 2002). As a result, the authors opted to develop an ordered qualitative VIEW rating system that consisted of placing the view of turbines into one of five possible categories: NO VIEW, MINOR, MODERATE, SUBSTANTIAL, and EXTREME. These ratings were developed to encompass considerations of distance, number of turbines visible, and viewing angle into one ordered categorical scale, and each rating is defined in Table 3:⁴¹

NO VIEW	The turbines are not visible at all from this home.
MINOR VIEW	The turbines are visible, but the scope (viewing angle) is narrow, there are many obstructions, or the distance between the home and the facility is large.
MODERATE VIEW	The turbines are visible, but the scope is either narrow or medium, there might be some obstructions, and the distance between the home and the facility is most likely a few miles.
SUBSTANTIAL VIEW	The turbines are dramatically visible from the home. The turbines are likely visible in a wide scope and most likely the distance between the home and the facility is short.
EXTREME VIEW	This rating is reserved for sites that are unmistakably dominated by the presence of the wind facility. The turbines are dramatically visible from the home and there is a looming quality to their placement. The turbines are often visible in a wide scope or the distance to the facility is very small.

Table 3: Definition of VIEW Categories

Photographic examples of each of the categories are contained in Appendix E.

visibility. This was corroborated elsewhere by Maloy and Dean (2001) and Riggs and Dean (2007). As a result of these findings, it was determined that field collection of VIEW data was essential.

⁴¹In addition to the qualitative rating system that was ultimately used in this study, a variety of quantitative data were collected that might describe the nature of the view of wind turbines, including the total number of turbines visible, the distance of the home to the nearest wind turbine, and the view scope/viewing angle (i.e., the degree to which the turbines spread out in front of the home: narrow, medium, or wide). To explore the validity of the qualitative rating scale two tests were conducted. First, a pre-study survey was conducted by showing 10 different off-site respondents 15 randomly selected photographs from the field representing the various rated VIEW categories. The higher VIEW ratings were oversampled to create a roughly equal distribution among the categories. The respondents rated the views into one of the qualitative categories. The on-site / field collected ratings matched the off-site responses 65% of the time, with 97% of the rankings differing by no more than one category. Ninetyeight percent of the on-site-ranked MINOR VIEWs and 89% of the EXTREME VIEWs were similarly ranked by off-site respondents. The on-site rankings were less than the off-site rankings 97% of the time; it is assumed that this is because on-site ratings took into account a greater portion of the panorama than were captured in the photos, which translated into a lower ranking. Secondly, a post hoc Multinomial Logistic Regression model was created that used the qualitative on-site VIEW ratings as the dependent variable and the quantitative measures of distance to nearest turbine, number of turbines visible, and view scope as the independent variables. This model produced high Pseudo R² statistics (Cox and Snell 0.88, Nagelkerke 0.95, and McFadden 0.79) and predicted values that were highly correlated with the actual qualitative rating (Pearson's 0.88). Therefore, both tests corroborated the appropriateness of the simpler qualitative VIEW rankings used herein.

In addition to the qualitative VIEW measurements, a rating for the quality of the scenic vista ("VISTA")⁴² from each home, absent the existence of the wind facilities, was also collected in the field. An assessment of the quality of the VISTA from each home was needed because VIEW and VISTA are expected to be correlated; for example, homes with a PREMIUM VISTA are more likely to have a wide viewing angle in which wind turbines might also be seen. Therefore, to accurately measure the impacts of the VIEW of wind turbines on property values a concurrent control for VISTA (independent of any views of turbines) is required. Drawing heavily on the landscape-quality rating system developed by Buhyoff et al. (1994) and to a lesser degree on the systems described by others (Daniel and Boster, 1976; USDA, 1995), an ordered VISTA rating system consisting of five categories was developed: POOR, BELOW AVERAGE, AVERAGE, ABOVE AVERAGE, and PREMIUM, with each rating defined in Table 4:⁴³

	<u> </u>
POOR VISTA	These vistas are often dominated by visually discordant man-made alterations (not considering turbines), or are uncomfortable spaces for people, lack interest, or have virtually no recreational potential.
BELOW AVERAGE VISTA	These scenic vistas contain visually discordant man-made alterations (not considering turbines) but are not dominated by them. They are not inviting spaces for people, but are not uncomfortable. They have little interest or mystery and have minor recreational potential.
AVERAGE VISTA	These scenic vistas include interesting views that can be enjoyed often only in a narrow scope. These vistas may contain some visually discordant man- made alterations (not considering turbines), are moderately comfortable spaces for people, have some interest, and have minor recreational potential.
ABOVE AVERAGE VISTA	These scenic vistas include interesting views that often can be enjoyed in a medium to wide scope. They might contain some man-made alterations (not considering turbines), yet still possess significant interest and mystery, are moderately balanced and have some potential for recreation.
PREMIUM VISTA	These scenic vistas would include "picture postcard" views that can be enjoyed in a wide scope. They are often free or largely free of any discordant man made alterations (not considering turbines), possess significant interest, memorable qualities, and mystery and are well balanced and likely have a high potential for recreation.

Table 4: Definition of VISTA Categories

Photographic examples of each of the categories are contained in Appendix D.

⁴² Scenic vista ratings are individually and collectively referred to as "VISTA" from this point forward.

⁴³ The appropriateness of these rankings were tested in two ways. First, a set of 34 pictures taken on-site and representing various categories of VISTA were shown to 10 off-site respondents who were asked to rank them using the same categories, and then explain why they rated them as such. Although the off-site ratings matched the on-site ratings only 51% of the time, 94% of on- and off-site rankings differed by no more than one category, with 17% of the off-site rankings below the on-site and 26% ranked above. The descriptions of why the rankings where chosen by the off-site respondents illuminated the fact that off-site ratings did not take into account a number of aspects that were not adequately captured in the photos, but that were apparent in the field. This finding was borne out by a second test that had five individuals visit seven homes in the field to rank their scenic vistas. When all respondents were on-site, they similarly ranked the vista 72% of the time, with a rankingthat differed by no more than one category occurring one hundred percent of the time.

In addition to the VIEW and VISTA ratings, it was assumed that the orientation of the home to the view of turbines (e.g., front, back, or side) ("ORIENTATION"), and the degree to which the view of the turbines overlapped the primary scenic vista (e.g., not at all, barely, somewhat or strongly) ("OVERLAP"), might influence residential property values. As such, information on ORIENTATION and OVERLAP were also collected in the field.

3.2.4. Field Data Collection

Field data collection was conducted on a house-by-house basis. Each of the 6,194 homes was visited by the same individual to remove bias among field ratings. Data collection was conducted in the fall of 2006, and the spring, summer, and fall of 2007 and 2008. Each house was photographed and, when appropriate, so too were views of turbines and the prominent scenic vista.⁴⁴ Data on VIEW were collected only for those homes that sold after at least one wind power facility had been erected in the study area. When multiple wind facilities, with different construction dates, were visible from a home, field ratings for VIEW were made by taking into account which turbines had been erected at the time of sale. Additionally, if the season at the time of sale differed from that of data collection and, for example, if leaves were off the trees for one but on for the other, an effort was made to modulate the VIEW rating accordingly if necessary.⁴⁵

Both VIEW and VISTA field ratings were arrived at through a Q-Sort method (Pitt and Zube, 1979), which is used to distinguish relatively similar rankings. For views of turbines, the rater first determined if the ranking was MINOR or EXTREME. If neither of these two rankings was appropriate, then only a choice between MODERATE and SUBSTANTIAL was required. Similarly, for VISTA rankings, first POOR and PREMIUM were distinguished from the others; if neither applied then BELOW AVERAGE or ABOVE AVERAGE could be selected. If neither of those were appropriate the VISTA, by default, was considered AVERAGE. In all cases, if wind turbines were visible from the home, the VISTA rankings were made as if those turbines did not exist.

3.3. Data Summary

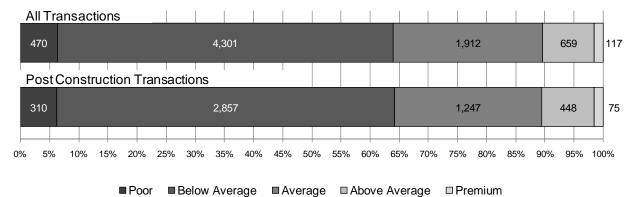
The final dataset consists of 7,459 valid and screened residential transactions occurring between January 2, 1996 and June 30, 2007. Those transactions are arrayed across time and the ten wind project study areas as shown in Table 5. The sample of valid residential transactions ranges from 412 in Lee County, Illinois (ILLC) to 1,311 in Howard County, Texas (TXHC).⁴⁶ Of the total 7,459 transactions, 4,937 occurred after construction commenced on the relevant wind facilities. More specifically, 23% of the transactions (n=1,755) took place before any wind facility was announced and 10% occurred after announcement but before construction commenced (n=767),

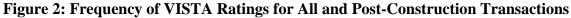
⁴⁴ In many cases the prominent VISTA was homogenous across groups of home, for instance urban homes on the same road. In those cases a picture of the VISTA of one home was applied to all of the homes. All pictures were taken with a Canon EOS Rebel XTi Single Lens Reflex Camera with a 18-55mm lens. VIEW and VISTA pictures were taken with the lens set to 18mm, with the camera at head height, and with the center of the camera pointed at the center of the prominent VISTA or VIEW. Examples of the various VISTA and VIEW categories are contained in Appendices D and E respectively.

⁴⁵ This "modulation" occurred only for trees in the foreground, where, for instance, a single tree could obscure the view of turbines; this would not be the case for trees nearer the horizon.

⁴⁶ See description of "valid" in footnote 27 on page 13.

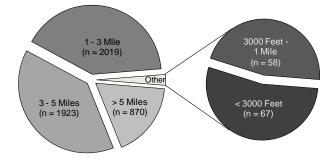
with the rest of the transactions occurring after construction commenced (66%, n=4,937).⁴⁷ Of that latter group, 17% (n=824, 11% of total) sold in the first year following the commencement of construction, 16% in the second year (n=811, 11% of total), and the remainder (67%) sold more than two years after construction commenced (n=3,302, 44% of total).

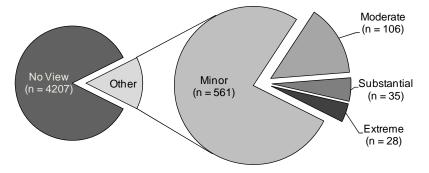

	Pre Announcement	Post Announcement Pre Construction	1st Year After Construction	2nd Year After Construction	2+ Years After Construction	Total
Benton/Walla Walla, WA & Umatilla, OR (WAOR)	226	45	76	59	384	790
Howard, TX (TXHC)	169	71	113	131	827	1311
Custer, OK (OKCC)	484	153	193	187	96	1113
Buena Vista, IA (IABV)	152	65	80	70	455	822
Lee, IL (ILLC)	115	84	62	71	80	412
Kewaunee/Door, WI (WIKCDC)	44	41	68	62	595	810
Somerset, PA (PASC)	175	28	46	60	185	494
Wayne, PA (PAWC)	223	106	64	71	87	551
Madison/Oneida, NY (MYMCOC)	108	9	48	30	268	463
Madison, NY (NYMC)	59	165	74	70	325	693
TOTAL	1755	767	824	811	3302	7459


Table 5: Summary of Transactions across Study Areas and Development Periods

A basic summary of the resulting dataset, including the many independent variables used in the hedonic models described later, is contained in Table 6 and Table 7. These tables present summary information for the full dataset (7,459 transactions) as well as the post-construction subset of that dataset (4,937 transactions); the latter is provided because much of the analysis that follows focuses on those homes that sold after wind facility construction. The mean nominal residential transaction price in the sample is \$102,968, or \$79,114 in 1996 dollars. The average house in the sample can be described as follows: it is 46 years old, has 1,620 square feet of finished living area above ground, is situated on 1.13 acres, has 1.74 bathrooms, and has a


⁴⁷ The announcement date (as well as construction and online dates) was provided by Energy Velocity with the GIS files as described in footnote 20 on page 10. The date corresponds to the first time the facility appears in the public record, which was often the permit application date. This constitutes the first well established date when the existing wind facility would have been likely known by the public, and therefore is appropriate to use for this analysis, but there remain a number of areas for potential bias in this date. First, the permit application date might be preceded by news reports of the impending application; alternatively, if the public record was not published online (that Energy Velocity used to establish their date), the "announcement" date - as used here - could, in fact, follow the permit application date. To address this, when possible, the authors had discussions with the developer of the facility. In most cases, the Energy Velocity dates were found to be accurate, and when they were not they were adjusted to reflect the dates provided by the developer. A second potential source of bias is the possibility that a different project was proposed but never built, but that influenced the residential market in the study area prior to the "announcement" date. Although this is likely rarer, we are aware of at least a few projects that fit that description in the study areas. A final source of bias might revolve around the likelihood that awareness of a project could occur even before the facility is formally announced. For example, a community member might know that a wind facility is being considered because they had been approached by the wind development company well ahead of a public announcement. In turn, they might have had private discussions regarding the facility with other members of the community. Taken together, it is appropriate to assume that there is some bias in the "announcement" date, and that awareness of the project might precede the date used in this analysis. How this bias might affect the results in this report is addressed further in Section 5.3 and footnote 74 on page 38.


slightly better than average condition.⁴⁸ Within the full sample, 6% and 58% of homes had a poor or below average VISTA rating, respectively; 26% of homes received an average rating on this scale, with 9% above average and 2% experiencing premium vistas (see Figure 2).


With respect to the variables of interest, among the post-construction subset of 4,937 transactions, the frequency of the DISTANCE categories is found to follow geometry with the smallest numbers of transactions occurring near the wind turbines and ever increasing numbers further away (see Figure 3). 67 transactions (1%) are situated inside of 3,000 feet (< 0.57 Miles), 58 (1%) are between 3,000 feet and one mile (0.57-1 mile), 2,019 (41%) occur outside of one mile but inside of three miles (1-3 miles), 1,923 (39%) occur between three and five miles (3-5 miles), and 870 (18%) occur outside of five miles (>5 miles).⁴⁹ In this same post-construction group, a total of 730 homes that sold (15%) have a view of the wind turbines (see Figure 4). A large majority of those homes have MINOR view ratings (n = 561, 11% of total), with 2% having MODERATE ratings (n=106) and the remaining transactions roughly split between SUBSTANTIAL and EXTREME ratings (n=35, 0.6%, and n=28, 0.5%, respectively). A full description of the variables of interest and how they are arrayed at the study area level is contained in Appendix A.

⁴⁸ The variable for the condition of the home was not uniform across study areas because, in some cases, it took into account construction grade while in others it did not.

⁴⁹ These numbers and percentages are skewed slightly from the overall population of transactions because homes outside of three miles were often under-sampled to reduce field data collection burdens. Further, higher numbers of homes fall into each of the categories when the post-announcement-pre-construction transactions are included, as they are in some models. These additional transactions are described below in Table 7 under "All Sales."

Figure 4: Frequency of VIEW Ratings for Post-Construction Transactions

Table 6: Summary Statistics: All Sales and Post-Construction Sales

			All Sales			Post Construction Sales		
Variable Name	Description	Freq. *	Mean	Std. Dev.	Freq. *	Mean	Std. Dev.	
SalePrice	The unadjusted sale price of the home (in US dollars)	7,459	102,968	64,293	4,937	110,166	69,422	
SalePrice96	The sale price of the home adjusted to 1996 US dollars	7,459	79,114	47,257	4,937	80,156	48,906	
LN_SalePrice96	The natural log transformation of the sale price of the home adjusted to 1996 US dollars	7,459	11.12	0.58	4,937	11.12	0.60	
AgeatSale	The age of the home at the time of sale	7,459	46	37	4,937	47	36	
AgeatSale_Sqrd	The age of the home at the time of sale squared	7,459	3,491	5,410	4,937	3,506	5,412	
Sqft_1000	The number of square feet of above grade finished living area (in 1000s)	7,459	1.623	0.59	4,937	1.628	0.589	
Acres	The number of Acres sold with the residence	7,459	1.13	2.42	4,937	1.10	2.40	
Baths	The number of Bathrooms (Full Bath $= 1$, Half Bath $= 0.5$)	7,459	1.74	0.69	4,937	1.75	0.70	
ExtWalls_Stone	If the home has exterior walls of stone, brick or stucco (Yes = 1, No = 0)	2,287	0.31	0.46	1,486	0.30	0.46	
CentralAC	If the home has a Central AC unit (Yes = 1 , No = 0)	3,785	0.51	0.50	2,575	0.52	0.50	
Fireplace	The number of fireplace openings	2,708	0.39	0.55	1,834	0.40	0.55	
Cul_De_Sac	If the home is situated on a cul-de-sac (Yes $= 1$, No $= 0$)	990	0.13	0.34	673	0.14	0.34	
FinBsmt	If finished basement square feet is greater than 50% times first floor square feet (Yes = 1, No = 0)	1,472	0.20	0.40	992	0.20	0.40	
Water_Front	If the home shares a property line with a body of water or river $(Yes = 1, No = 0)$	107	0.01	0.12	87	0.02	0.13	
Cnd_Low	If the condition of the home is Poor (Yes = 1, $No = 0$)	101	0.01	0.12	69	0.01	0.12	
Cnd_BAvg	If the condition of the home is Below Average (Yes = 1 , No = 0)	519	0.07	0.25	359	0.07	0.26	
Cnd_Avg	If the condition of the home is Average (Yes = 1 , No = 0)	4,357	0.58	0.49	2,727	0.55	0.50	
Cnd_AAvg	If the condition of the home is Above Average (Yes = 1 , No = 0)	2,042	0.27	0.45	1,445	0.29	0.46	
Cnd_High	If the condition of the home is High (Yes = 1 , No = 0)	440	0.06	0.24	337	0.07	0.25	
Vista_Poor	If the Scenic Vista from the home is Poor (Yes = 1 , No = 0)	470	0.06	0.24	310	0.06	0.24	
Vista_BAvg	If the Scenic Vista from the home is Below Average (Yes = 1, No = 0)	4,301	0.58	0.49	2,857	0.58	0.49	
Vista_Avg	If the Scenic Vista from the home is Average (Yes = 1, No = 0)	1,912	0.26	0.44	1,247	0.25	0.44	
Vista_AAvg	If the Scenic Vista from the home is Above Average (Yes = 1, No = 0)	659	0.09	0.28	448	0.09	0.29	
Vista_Prem	If the Scenic Vista from the home is Premium (Yes = 1 , No = 0)	117	0.02	0.12	75	0.02	0.12	
SaleYear	The year the home was sold	7,459	2002	2.9	4,937	2004	2.3	

* "Freq." applies to the number of cases the parameter's value is not zero

		All Sales			Post Construction Sales			
Variable Name	Description	Freq. *	Mean	Std. Dev.	Freq. *	Mean	Std. Dev.	
View_None	If the home sold after construction began and had no view of the turbines (Yes = 1, No = 0)	4,207	0.56	0.50	4,207	0.85	0.36	
View_Minor	If the home sold after construction began and had a Minor View of the turbines (Yes = 1, No = 0)	561	0.08	0.26	561	0.11	0.32	
View_Mod	If the home sold after construction began and had a Moderate View of the turbines (Yes = 1 , No = 0)	106	0.01	0.12	106	0.02	0.15	
View_Sub	If the home sold after construction began and had a Substantial View of the turbines (Yes = 1 , No = 0)	35	-	0.07	35	0.01	0.08	
View_Extrm	If the home sold after construction began and had a Extreme View of the turbines (Yes = 1 , No = 0)	28	-	0.06	28	0.01	0.08	
DISTANCE †	Distance to nearest turbine if the home sold after facility "announcement", otherwise 0	5,705	2.53	2.59	4,895	3.57	1.68	
Mile_Less_0.57 †	If the home sold after facility "announcement" and was within 0.57 miles (3000 feet) of the turbines (Yes = 1, No = 0)	80	0.01	0.09	67	0.01	0.12	
Mile_0.57to1 †	If the home sold after facility "announcement" and was between 0.57 miles (3000 feet) and 1 mile of the turbines (Yes = 1, No = 0)	65	0.01	0.09	58	0.01	0.11	
Mile_1to3 †	If the home sold after facility "announcement" and was between 1 and 3 miles of the turbines (Yes = 1, No = 0)	2,359	0.27	0.44	2,019	0.41	0.49	
Mile_3to5 †	If the home sold after facility "announcement" and was between 3 and 5 miles of the turbines (Yes = 1, No = 0)	2,200	0.26	0.44	1,923	0.39	0.49	
Mile_Gtr5 †	If the home sold after facility "announcement" and was outside 5 miles of the turbines (Yes = 1, No = 0)	1,000	0.12	0.32	870	0.18	0.38	

Table 7: Summary of Variables of Interest: All Sales and Post-Construction Sales

* "Freq." applies to the number of cases the parameter's value is not zero

† "All Sales" freq., mean and standard deviation DISTANCE and DISTANCE fixed effects variables (e.g., Mile_1to3) include transactions that occurred after facility "announcement" and before "construction" as well as those that occured post-construction

4. Base Hedonic Model

This section uses the primary hedonic model ("Base Model") to assess whether residential sales prices are affected, in a statistically measurable way, by views of and proximity to wind power facilities. In so doing, it simultaneously tests for the presence of the three potential property value stigmas associated with wind power facilities: Area, Scenic Vista, and Nuisance. This section begins with a discussion of the dataset that is used and the form of the model that is estimated, and then turns to the results of the analysis. Various alternative hedonic models are discussed and estimated in Section 5, with Sections 6 and 7 providing a discussion of and results from the repeat sales and sales volume models.

4.1. Dataset

The data used for the Base Model were described in Section 3.3. A key threshold question is whether or not to include the residential transactions that pre-date the relevant wind facility. Specifically, though the complete dataset consists of 7,459 residential transactions, a number of these transactions (n = 2,522) occurred before the wind facility was constructed. Should these homes which, at the time of sale, would not have had any view of or distance to the wind facility, be included? Two approaches could be applied to address this issue. First, pre-construction transactions could be included in the hedonic model either as part of the reference category within which no wind-project property value impacts are assumed to exist, or instead by specifically identifying these pre-construction transactions through an indicator variable. Second, and alternatively, pre-construction transactions could simply be excluded from the analysis altogether.

For the purpose of the Base Model, the latter approach is used, therefore relying on only the post-construction subset of 4,937 residential transactions. This approach, as compared to the others, results in somewhat more intuitive findings because all homes have a distance greater than zero and have a possibility of some view of the turbines. More importantly, this approach minimizes the chance of inaccuracies that may otherwise exist due to inflation adjustment concerns or outdated home characteristics information.⁵⁰ Nonetheless, to test for the implications of this choice of datasets, alternative hedonic models that use the full dataset were estimated, and are discussed in detail in Sections 5.3 and 5.4.

⁵⁰ Home characteristics were obtained as of the last property assessment. The timing of that assessment relative to the timing of the home sale transaction dictates how representative the assessed home characteristics are of the subject home when it was sold. For example, if a home sold early in the study period but subsequently had significant improvements made that are reflected in the current assessment data used in the analysis, the model would assign value to these home characteristics at the time of sale when, in fact, those characteristics were inaccurate. Additionally, the inflation adjustment index used in this analysis to translate home values to real 1996 dollars came from the nearest or more appropriate municipal statistical area (MSA). Many of the wind projects in the analysis are located in relatively rural parts of the country, and the housing market in the nearest metropolitan area could be different than the market surrounding wind projects. Although these areas have – in many instances – recently begun to attract home buyers willing to commute back to the metropolitan areas on which the index is based, the older index adjustments are likely less accurate than the more recent adjustments. Using a subset of the data for the majority of the analyses that removes the older, pre-construction, homes minimizes both of these biases.

4.2. Model Form

A standard semi-log functional form is used for the hedonic models (as was discussed in Section 2.1), where the dependent variable (sales price in inflation-adjusted 1996 dollars) is transformed to its natural log form and the independent variables (e.g., square feet and acres) are not transformed. Using this form to examine the effect that views of, and distance to, wind facilities have on sales prices, the following basic model is estimated:

$$\ln(\mathbf{P}) = \beta_0 + \beta_1 \mathbf{N} + \sum_{s} \beta_2 \mathbf{S} + \sum_{k} \beta_3 \mathbf{X} + \sum_{v} \beta_4 \mathbf{VIEW} + \sum_{d} \beta_5 \mathbf{DISTANCE} + \varepsilon$$
(1)

where

P represents the inflation-adjusted sales price,

N is the spatially weighted neighbors' predicted sales price,

S is the vector of s Study Area fixed effects variables (e.g., WAOR, OKCC, etc.),

X is a vector of k home and site characteristics (e.g., acres, square feet, number of bathrooms, condition of the home, age of home, VISTA, etc.),

VIEW is a vector of *v* categorical view of turbine variables (e.g., MINOR, MODERATE, etc.), DISTANCE is a vector of *d* categorical distance to turbine variables (e.g., less than 3000 feet, between one and three miles, etc.),

 β_0 is the constant or intercept across the full sample,

 β_1 is a parameter estimate for the spatially weighted neighbor's predicted sales price,

 β_2 is a vector of *s* parameter estimates for the study area fixed effects as compared to homes sold in the Washington/Oregon (WAOR) study area,

 β_3 is a vector of k parameter estimates for the home and site characteristics,

 β_4 is a vector of *v* parameter estimates for the VIEW variables as compared to homes sold with no view of the turbines,

 β_5 is a vector of *d* parameter estimates for the DISTANCE variables as compared to homes sold situated outside of five miles, and

 ε is a random disturbance term.

As such, this model, and all subsequent hedonic models, has four primary groups of parameters: variables of interest, spatial adjustments, study-area fixed effects, and home and site characteristics.

The variables of interest, VIEW and DISTANCE, are the focus of this study, and allow the investigation of the presence of Area, Scenic Vista, and Nuisance Stigmas. These variables were defined in Section 3, and are summarized in Table 8. Both VIEW and DISTANCE appear in the model together because a home's value may be affected in part by the magnitude of the view of the wind turbines, and in part by the distance from the home to those turbines, and both variables appear in the Base Model as ordered categorical values. The coefficients associated with these two vectors of variables (β_4 and β_5) represent the marginal impact of views of, and distances to, wind turbines on sales prices, as compared to a "reference" category of residential transactions, and should be ordered monotonically from low to high.⁵¹ This form of variable was used to

⁵¹ "Reference category" refers to the subset of the sample to which other observations are compared, and is pertinent when using categorical or "fixed effect" variables.

impose the least structure on the underlying data.⁵² For the purpose of the Base Model, the reference category for the DISTANCE variables are those transactions of homes that were situated outside of five miles from the nearest wind turbine. The reference category for the VIEW variables are those transactions of homes that did not have a view of the wind facility upon sale. Among the post-construction sample of homes, these reference homes are considered the least likely to be affected by the presence of the wind facilities.⁵³

Variable Name	Description	Туре	Expected Sign
View_None	If the home sold after construction began and had no view of the turbines (Yes = 1, No = 0)	Reference	n/a
View_Minor	If the home sold after construction began and had a Minor View of the turbines (Yes = 1, No = 0)	OC	-
View_Mod	If the home sold after construction began and had a Moderate View of the turbines (Yes = 1, No = 0)	OC	-
View_Sub	If the home sold after construction began and had a Substantial View of the turbines (Yes = 1, No = 0)	OC	-
View_Extrm	If the home sold after construction began and had an Extreme View of the turbines (Yes = 1, No = 0)	OC	-
Mile_Less_0.57	If the home sold after facility "construction" and was within 0.57 miles (3000 feet) of the turbines (Yes = 1, No = 0)	OC	-
Mile_0.57to1	If the home sold after facility "construction" and was between 0.57 miles (3000 feet) and 1 mile of the turbines (Yes = 1, No = 0)	OC	-
Mile_1to3	If the home sold after facility "construction" and was between 1 and 3 miles of the turbines (Yes = 1, No = 0)	OC	-
Mile_3to5	If the home sold after facility "construction" and was between 3 and 5 miles of the turbines (Yes = 1, No = 0)	OC	-
Mile_Gtr5	If the home sold after facility "construction" and was outside 5 miles of the turbines (Yes = 1, No = 0)	Reference	n/a

Table 8: List of Variables of Interest Included in the Base Model

"OC" Ordered Categorical (1 = yes, 0 = no) values are interpreted in relation to the reference categorical case and are expected to have a monotonic order from low to high.

The three stigmas are investigated though these VIEW and DISTANCE variables. Scenic Vista Stigma is investigated through the VIEW variables. Area and Nuisance Stigmas, on the other hand, are investigated through the DISTANCE variables. To distinguish between Area and

⁵² In place of the ordered categorical DISTANCE variables, practitioners often rely on a continuous DISTANCE form (e.g., Sims et al., 2008). Similar to ordered categorical variables, continuous variables have a natural ordering, either ascending or descending, but, unlike categorical variables, these "continuous" values are on a scale. Therefore, given any two of its values X_1 and X_2 and a specific functional form, the ratio " X_1/X_2 " and the distance " $X_1 - X_2$ " have a fixed meaning. Examples of continuous variables other than DISTANCE that are commonly used include the number of square feet of living area (in 1000s) in a home (SQFT_1000) or the acres in the parcel (ACRES). A continuous functional form of this nature "imposes structure" because practitioners must decide how price is related to the underlying variables through the selection of a specific functional relationship between the two. For instance, in the case of DISTANCE, is there a linear relationship (which would imply a similar marginal difference between two distances both near and far from the turbines), does it decay slowly as distance grows, or does it fade completely at some fixed distance? Because of the lack of literature in this area, no *a priori* expectations for which functional form is the best were established, and therefore unstructured categorical variables are used in the Base Model. Nonetheless, a continuous DISTANCE form is explored in Section 5.2.

⁵³ It is worth noting that these reference homes are situated in both rural and urban locales and therefore are not uniquely affected by influences from either setting. This further reinforces their worthiness as a reference category.

Nuisance Stigma, it is assumed that Nuisance effects are concentrated within one mile of the nearest wind turbine, while Area effects will be considered for those transactions outside of one mile. Any property value effects discovered outside of one mile and based on the DISTANCE variables are therefore assumed to indicate the presence of Area Stigma, while impacts within a mile may reflect the combination of Nuisance and Area Stigma.

The second set of variables in the Base Model - spatial adjustments - correct for the assumed presence of spatial autocorrelation in the error term (ε). It is well known that the sales price of a home can be systematically influenced by the sales prices of those homes that have sold nearby. Both the seller and the buyer use information from comparable surrounding sales to inform them of the appropriate transaction price, and nearby homes often experience similar amenities and disamenities. This lack of independence of home sale prices could bias hedonic regression results and, to help correct for this bias, a spatially (i.e., distance) weighted neighbors' sales price (N) is included in the model. Empirically, the neighbors' price has been found to be a strong (and sometimes even the strongest) predictor of home values (Leonard and Murdoch, forthcoming), and the coefficient β_I is expected to be positive, indicating a positive correlation between the neighbors' and subject home's sales price. A more-detailed discussion of the importance of this variable, and how it was created, is contained in Appendix G.

The third group of variables in the Base Model - study area fixed effects - control for study area influences and the differences between them. The vector's parameters β_2 represent the marginal impact of being in any one of the study areas, as compared to a reference category. In this case, the reference category is the Washington/Oregon (WAOR) study area.⁵⁴ The estimated coefficients for this group of variables represent the combined effects of school districts, tax rates, crime, and other locational influences across an entire study area. Although this approach greatly simplifies the estimation of the model, because of the myriad of influences captured by these study-area fixed effects variables, interpreting the coefficient can be difficult. In general, though, the coefficients simply represent the mean difference in sales prices between the study areas and the reference study area (WAOR). These coefficients are expected to be strongly influential, indicating significant differences in sales prices across study areas.

The fourth group of variables in the Base Model are the core home and site characteristics (X), and include a range of continuous ("C"),⁵⁵ discrete ("D"),⁵⁶ binary ("B"),⁵⁷ and ordered categorical ("OC") variables. The specific home and site variables included in the Base Model are listed in Table 9 along with the direction of expected influence.⁵⁸ Variables included are age

⁵⁴ Because there is no intent to focus on the coefficients of the study area fixed effect variables, the reference case is arbitrary. Further, the results for the other variables in the model are completely independent of this choice.

⁵⁵ See discussion in footnote 52 on previous page.

⁵⁶ Discrete variables, similar to continuous variables, are ordered and the distance between the values, such as X_1 and X_2 , have meaning, but for these variables, there are only a relatively small number of discrete values that the variable can take, for example, the number of bathrooms in a home (BATHROOMS).

⁵⁷ Binary variables have only two conditions: "on" or "off" (i.e., "1" or "0" respectively). Examples are whether the home has central air conditioning ("CENTRAL_AC") or if the home is situated on a cul-de-sac ("CUL_DE_SAC"). The coefficients for these variables are interpreted in relation to when the condition is "off."

⁵⁸ For those variables with a "+" sign it is expected that as the variable increases in value (or is valued at "1" as would be the case for fixed effects variables) the price of the home will increase, and the converse is true for the variables with a "-" sign. The expected signs of the variables all follow conventional wisdom (as discussed in

of the home, home and lot size, number of bathrooms and fireplaces, the condition of the home, the quality of the scenic vista from the home, if the home has central AC, a stone exterior, and/or a finished basement, and whether the home is located in a cul-de-sac and/or on a water way.⁵⁹

Variable Name	Description	Туре	Expected Sign
AgeatSale	The age of the home at the time of sale in years		-
AgeatSale_Sqrd	The age of the home at the time of sale squared	С	+
Sqft_1000	The number of square feet of above grade finished living area (in 1000s)	С	+
Acres	The number of Acres sold with the residence	С	+
Baths	The number of Bathrooms (Full Bath $= 1$, Half Bath $= 0.5$)	D	+
ExtWalls_Stone	If the home has exterior walls of stone, brick or stucco (Yes = 1, No = 0)	В	+
CentralAC	If the home has a Central AC unit (Yes = 1 , No = 0)	В	+
Fireplace	The number of fireplace openings	D	+
Cul_De_Sac	If the home is situated on a cul-de-sac (Yes = 1 , No = 0)	В	÷
FinBsmt	If finished basement sqft > 50% times first floor sqft (Yes = 1, No = 0)	В	+
Water_Front	If the home shares a property line with a body of water or river (Yes = 1, No = 0)		+
Cnd_Low	If the condition of the home is Poor (Yes = 1 , No = 0)	OC	-
Cnd_BAvg	If the condition of the home is Below Average (Yes = 1 , No = 0)	OC	-
Cnd_Avg	If the condition of the home is Average (Yes = 1 , No = 0)	Reference	n/a
Cnd_AAvg	If the condition of the home is Above Average $(Yes = 1, No = 0)$	OC	+
Cnd_High	If the condition of the home is High (Yes = 1 , No = 0)	OC	+
Vista_Poor	If the Scenic Vista from the home is Poor (Yes = 1 , No = 0)	OC	-
Vista_BAvg	If the Scenic Vista from the home is Below Average $(Yes = 1, No = 0)$	OC	-
Vista_Avg	If the Scenic Vista from the home is Average (Yes = 1, No = 0)	Reference	n/a
Vista_AAvg	If the Scenic Vista from the home is Above Average $(Yes = 1, No = 0)$	OC	+
Vista_Prem	If the Scenic Vista from the home is Premium $($ Yes $= 1, $ No $= 0)$	OC	+

"C" Continuous, "D" Discrete, and "B" Binary (1 = yes, 0 = no) values are interpreted in relation to "No"

"OC" Ordered Categorical (1 = yes, 0 = no) values are interpreted in relation to the reference categorical case and are expected to have a monotonic order from low to high.

Sirmans et al., 2005a), save AgeatSale and AgeatSale_Sqrd, which are expected to be negative and positive, respectively. The magnitude of the coefficient of AgeatSale is expected to be larger than that of AgeatSale_Sqrd indicating an initial drop in value as a home increases in age, and then an increase in value as the home becomes considerably older and more "historic."

⁵⁹ Some characteristics, such as whether the home had a deck, a pool, or is located on a public sewer, are not available consistently across the dataset and therefore are not incorporated into the model. Other characteristics, such as the number of bedrooms, the number of stories, or if the home had a garage, are available but are omitted from the final model because they are highly correlated with characteristics already included in the model and therefore do not add significantly to the model's explanatory power. More importantly, and as discussed in Appendix G, when their inclusion or exclusion are tested, the results are stable with those derived from the Base Model.

It should be emphasized that in the Base Hedonic Model - equation (1) - and in all subsequent models presented in Section 5, all variables of interest, spatial adjustments, and home and site characteristics are pooled, and therefore their estimates represent the average across all study areas. Ideally, one would have enough data to estimate a model at the study area level - a fully unrestricted model - rather than pooled across all areas. This fully unrestricted model form, along with 15 other model forms (with some variables restricted and others not), are discussed in detail in Appendix F. In total, these 16 different models were estimated to explore which model was the most parsimonious (had the fewest parameters), performed the best (e.g., had the highest adjusted R^2 and the lowest Schwarz information criterion⁶⁰), and had the most stable coefficients and standard errors. The basic pooled model described by equation (1) is found to fit that description, and that model is therefore chosen as the Base Model to which others are compared. By making this choice the effort concentrates on identifying the presence of potential property value impacts across all of the study areas in the sample as opposed to any single study area.⁶¹

Finally, to assure that the model produces the best linear unbiased parameter estimates, the underlying assumptions of Ordinary Least Squares (OLS) regression techniques must be verified:

- 1) Homoskedastic error term;
- 2) Absence of temporal serial correlation;
- 3) Reasonably limited multicollinearity; and
- 4) Appropriate controls for outliers and influencers.⁶²

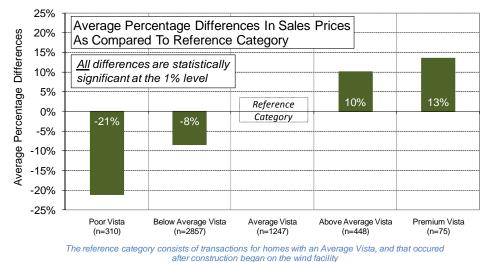
These assumptions, and the specific approaches that are used to address them, are discussed in detail in Appendix G.

4.3. Analysis of Results

Table 10 (on page 32) presents the results of the Base Model (equation 1).⁶³ The model performs well, with an adjusted R² of 0.77.⁶⁴ The spatial adjustment coefficient (β_1) of 0.29 (*p* value 0.00) indicates that a 10% increase in the spatially weighted neighbor's price increases the subject home's value by an average of 2.9%. The study-area fixed effects (β_2) variables are all significant at the one percent level, demonstrating important differences in home valuations

⁶⁰ The Schwarz information criterion measures relative parsimony between similar models (Schwarz, 1978).

⁶¹ Because effects might vary between study areas, and the models estimate an average across all study areas, the full range of effects in individual study areas will go undetermined. That notwithstanding, there is no reason to suspect that effects will be completely "washed out." For that to occur, an effect in one study area would have to be positive while in another area it would have to be negative, and there is no reason to suspect that sales prices would increase because of the turbines in one community while decreasing in other communities.


 $^{^{62}}$ The absence of spatial autocorrelation is often included in the group of assumptions, but because it was discussed above (and in Appendix G), and is addressed directly by the variable (N_i) included in the model, it is not included in this list.

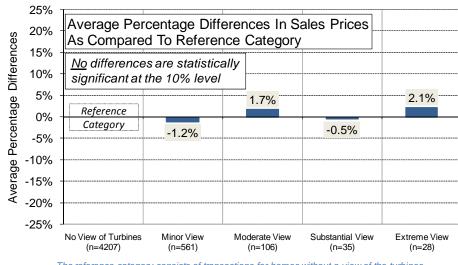
⁶³ This model and all subsequent models were estimated using the PROC REG procedure of SAS Version 9.2 TS1M0, which produces White's corrected standard errors.

 $^{^{64}}$ The appropriateness of the R² of 0.77 for this research is validated by the extensive hedonic literature that precedes it (see e.g., Kroll and Priestley, 1992; Boyle and Kiel, 2001; Simons, 2006b).

between the reference study area (WAOR) and the other nine study areas.⁶⁵ The sign and magnitudes of the home and site characteristics are all appropriate given the *a priori* expectations, and all are statistically significant at the one percent level.⁶⁶

Of particular interest are the coefficient estimates for scenic vista (VISTA) as shown in Figure 5. Homes with a POOR vista rating are found, on average, to sell for 21% less (p value 0.00) than homes with an AVERAGE rating, while BELOW AVERAGE homes sell for 8% less (p value 0.00). Conversely, homes with an ABOVE AVERAGE vista are found to sell for 10% more (p value 0.00) than homes with an AVERAGE vista, while PREMIUM vista homes sell for 13% more than AVERAGE homes (p value 0.00). Based on these results, it is evident that home buyers and sellers capitalize the quality of the scenic vista in sales prices.⁶⁷

Figure 5: Results from the Base Model for VISTA


 66 To benchmark the results against those of other practitioners the research by Sirmans et al. (2005a; 2005b) was consulted. They conducted a meta-analysis of 64 hedonic studies carried out in multiple locations in the U.S. during multiple time periods, and investigated the coefficients of ten commonly used characteristics, seven of which were included in the model. The similarities between their mean coefficients (i.e., the average across all 64 studies) and those estimated in the present Base Model are striking. The analysis presented here estimates the effect of square feet (in 1000s) on log of sales price at 0.28 and Sirmans et al. provide an estimate of 0.34, while ACRES was similarly estimated (0.02 to 0.03, Base Model and Sirmans et al., respectively). Further, AGEATSALE (age at the time of sale) (-0.006 to -0.009), BATHROOMS (0.09 to 0.09), CENTRALAC (0.09 to 0.08), and FIREPLACE (0.11 to 0.09) all similarly compare. As a group, the Base Model estimates differ from Sirmans et al. estimates in all cases by no more than a third of the Sirmans et al. mean estimate's standard deviation. This, taken with the relatively high adjusted R² of the Base Model, demonstrates the appropriateness of the model's specification.

⁶⁷ To benchmark these results they are compared to the few studies that have investigated the contribution of inland scenic vistas to sales prices. Benson et al. (2000) find that a mountain vista increases sales price by 8%, while Bourassa et al. (2004) find that wide inland vistas increase sales price by 7.6%. These both compare favorably to the 10% and 14% above average and premium rated VISTA estimates. Comparable studies for below average and poor VISTA were not found and therefore no benchmarking of those coefficients is conducted. Finally, it should again be noted that a home's scenic vista, as discussed in Section 3.2.3, was ranked without taking the presence of the wind turbines into consideration, even if those turbines were visible at the time of home sale.

⁶⁵ The reference category WAOR study area has the highest mean and median house values in the sample (as shown

in Appendix A) so the negative coefficients for all the study area fixed effect variables are appropriate.

Despite this finding for scenic vista, however, no statistically significant relationship is found between views of wind turbines and sales prices.⁶⁸ The coefficients for the VIEW parameters (β_4) are all relatively small, none are statistically significant, and they are not monotonically ordered (see Figure 6). Homes with EXTREME or SUBSTANTIAL view ratings, for which the Base Model is expected to find the largest differences, sell for, on average, 2.1% more (*p* value 0.80) and 0.5% less (*p* value 0.94) than NO VIEW homes that sold in the same post-construction period. Similarly, homes with MODERATE or MINOR view ratings sell, on average, for 1.7% more (*p* value 0.58) and 1.2% less (*p* value 0.40) than NO VIEW homes, respectively. None of these coefficients are sizable, and none are statistically different from zero. These results indicate that, among this sample at least, a statistically significant relationship between views of wind turbines and residential property values is not evident. In other words, there is an absence of evidence of a Scenic Vista Stigma in the Base Model.

Figure 6: Results from the Base Model for VIEW

The coefficients for the DISTANCE parameters (β_5) are also all relatively small and none are statistically significant (see Figure 7). Homes that are situated within 3000 feet (0.57 miles) of the nearest wind turbine, at the time of sale, are found to sell for 5.3% less (*p* value 0.40), on average, than homes outside of 5 miles that sold in the same "post-construction" period. Meanwhile, homes between 3000 feet and 1 mile sold for 5.5% less (*p* value 0.30), on average, than homes more than 5 miles away. Homes that are within 1 to 3 miles of the nearest turbine, as compared to homes outside of 5 miles, sold for essentially the same, on average (coefficient = 0.004, *p* value 0.80), while homes between 3 and 5 miles sold for 1.6% more (*p* value 0.23).

The reference category consists of transactions for homes without a view of the turbines, and that occured after construction began on the wind facility

 $^{^{68}}$ A significance level of 10% is used throughout this report, which corresponds to a *p*-value at or above 0.10. Although this is more liberal than the often used 5% (*p*-value at or above 0.05), it was chosen to give more opportunities for effects that might be fairly weak to be considered significant.