DRAFT

Bornish Wind Energy CentreWater Body Site Investigation Report

Prepared for:

NextEra Energy Canada 5500 North Service Road, Suite 205 Burlington, ON, L7L 6W6

Project No. 1231 Date: July 2012

DRAFT

Bornish Wind Energy Centre Water Body Site Investigation Report

Project Team:

Staff	Role
Andrew Ryckman	Project Manager/Biologist
Valerie Stevenson	Aquatic Biologist
Ashley Favaro	Aquatic Biologist
Blair Baldwin	Aquatic Biologist
Brian Watson	Aquatic Biologist
Gina MacVeigh	Aquatic Biologist
Michael Ewaschuk	Aquatic Biologist
Charlotte Moore	Terrestrial and Wetland Biologist
Kaitlin Boddaert	GIS Technician

Report submitted on July 19, 2012

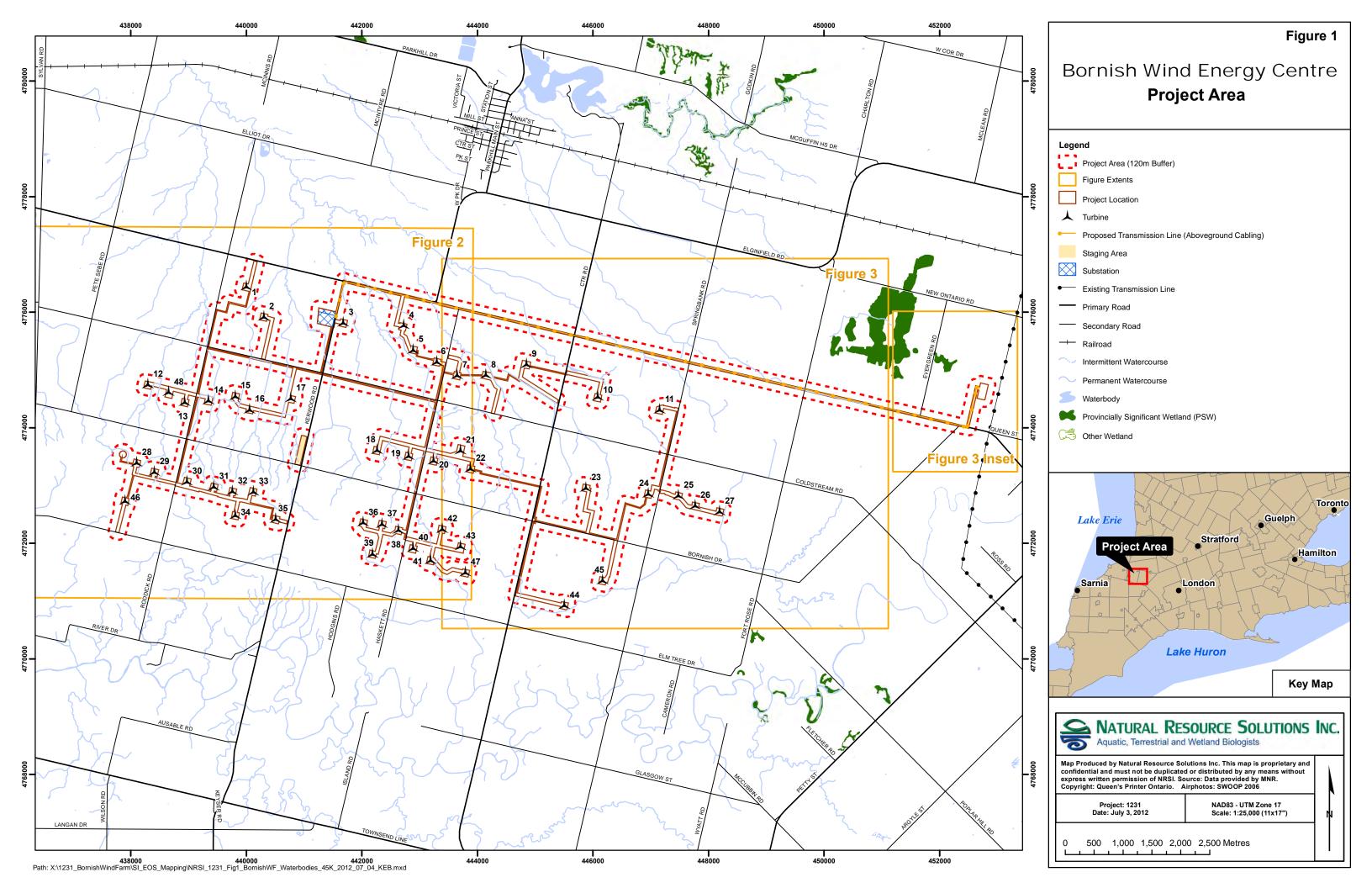
Andrew G. Ryckman

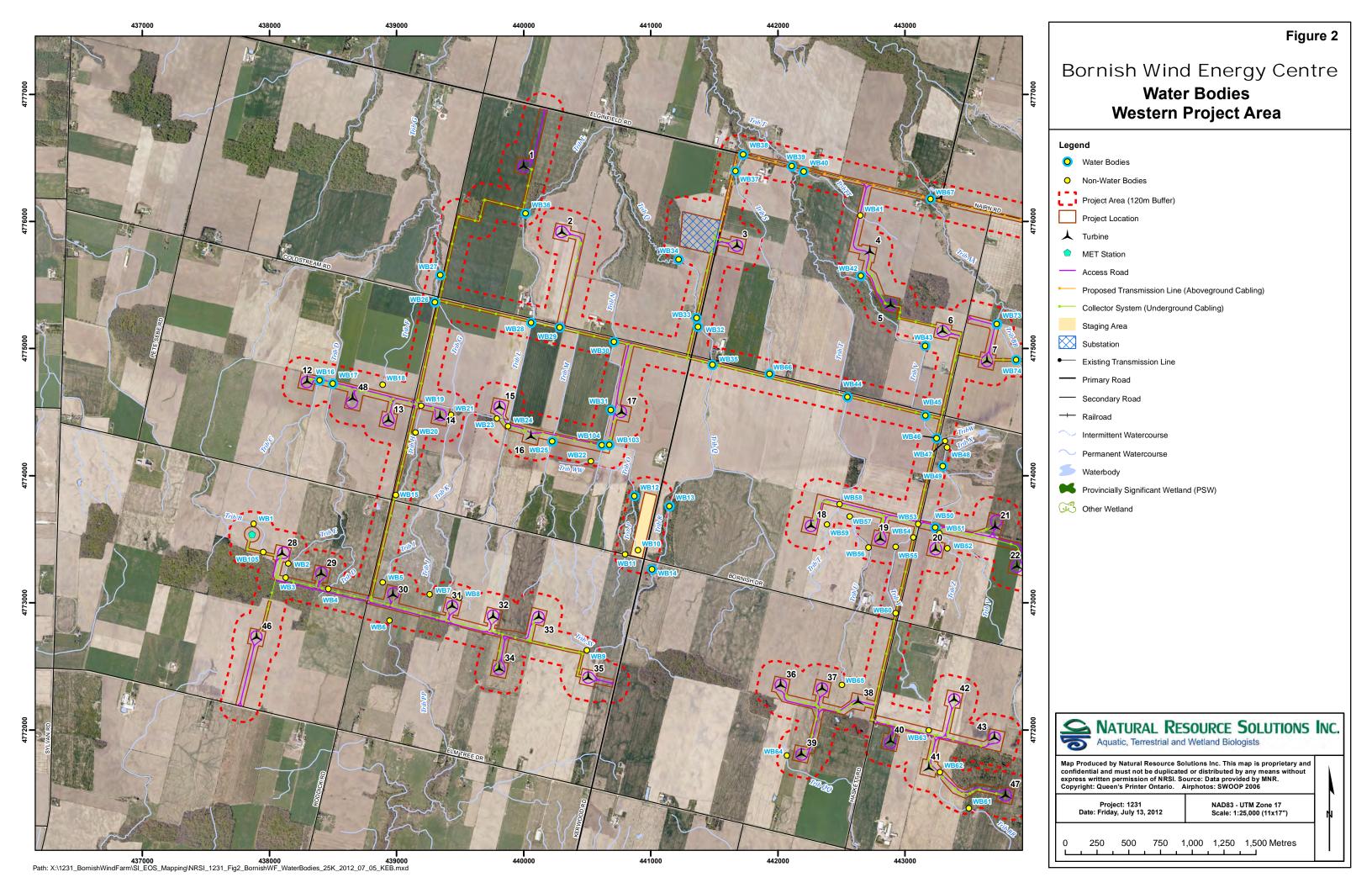
TABLE OF CONTENTS

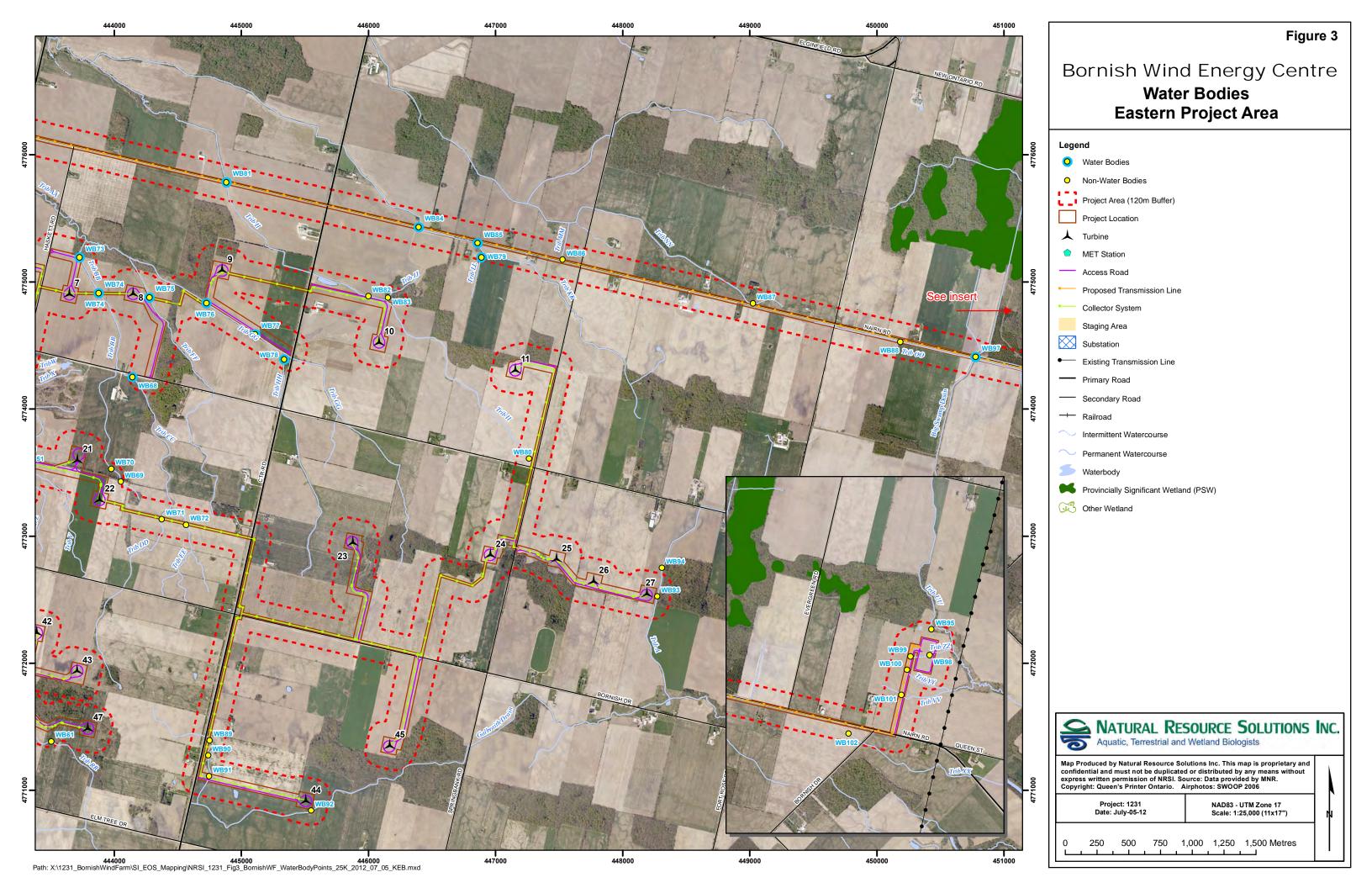
1.0	Introduction	.3
2.0	REA Requirements	
3.0	Staff Roles	
4.0	Summary of Records Review	
5.0	Site Investigation Methodology	
5.1	Survey Dates	
5.2	Lakes and Lake Trout Lakes	
	Permanent and Intermittent Watercourses	
	Seepage Areas	
6.0	Site Investigation Results	
	Lakes	
	.1.1 Lake Trout Lakes	
	1.2 Other Lakes	
6.2	Permanent or Intermittent Watercourses	
6.	2.1 Ptsebe Creek	17
6.	.2.2 Ausable River	
6.	.2.3 Big Swamp Drain	27
_	2.4 Galbraith Drain2	
6.3	Seepage Areas2	29
7.0	Modifications to the Records Review	30
8.0	Summary of Site Investigation	31
9.0	References	32
l ist o	f Tables	
	Summary of Records Review of the Bornish Wind Energy Centre	13
Table 2	2. Site Investigation Survey Details	14
Table 3	3. Water Body Site Investigations Summary for Bornish Wind Energy Centre Project Area	a
	Ptsebe Creek Drainage Area	
	4. Water Body Site Investigations Summary for Bornish Wind Energy Centre Project Area	
Table ¹	Ausable River Drainage Area5 Mater Body Site Investigations Summary for Bornish Wind Energy Centre Project Area	∠o a
	Big Swamp Drain	
	6. Water Body Site Investigations Summary for Bornish Wind Energy Centre Project Area	
	Galbraith Drain	
Table 7	7. Summary of Water Body Site investigations for the Bornish Wind Energy Centre	31
l ist o	f Figures	
	Project Area	. 5
Figure	2. Water Bodies – Western Project Area	. 6
Figure	3. Water Bodies – Eastern Project Area	. 7
l ist o	f Appendices	
Apper	• •	
Apper	<u> </u>	
	ndix III: Site Investigation Water Body Details	

1.0 Introduction

Natural Resource Solutions Inc. (NRSI) was retained in April 2011 by GL Garrad Hassan on behalf of NextEra Energy Canada to conduct a water body assessment in accordance with the Renewable Energy Approval (REA) Regulation. This assessment includes a records review, site investigation, and impact assessment of any water bodies occurring at a proposed 72.9MW wind energy generating facility in North Middlesex, Middlesex County Ontario. The analysis of the water body features is one issue being considered. Other factors, such as natural heritage, land ownership, social impacts, and cultural impacts are also being assessed under separate covers as outlined by the REA Regulation.


The proposed Bornish Wind Energy Centre ('the Project') will be owned and operated by Bornish Wind, LP, a wholly-owned subsidiary of NextEra. The Project is located in northwestern Middlesex County in the Township of North Middlesex, Ontario, more specifically, approximately 3.3km south of the Town of Parkhill, Ontario (Figures 1-3). The project area is bound to the north by Nairn/Elginfield Road, to the south by Townsend Line, and to the east and west by Broken Front/Scout Road and Fort Rose Road, respectively. The Bornish Wind Energy Centre is proposed to consist of up to forty-five GE 1.6-100 (1.62MW) wind energy generating turbines installed for a total installed capacity of 72.9MW. However, locations for forty-eight turbines will be permitted. Associated infrastructure including turbine access roads, overhead and underground electrical collector cabling, interconnection facilities and substations are also proposed. In addition, a transmission line is proposed to run north along Kerwood Road from the substation to Elginfield Road/Nairn Road. This transmission line is then proposed to continue eastward along Nairn Road to an existing 500kV line and interconnection point located west of Petty Street. The general project area was defined early in the planning process for the proposed wind energy facility, based on the availability of wind resources, approximate area required for the proposed project, and availability of existing infrastructure for connection to the electrical grid. The project area was used to facilitate information collection and the records review.


As defined by REA Regulation, the proposed layout of these features is collectively referred to as the 'project location'. This includes turbines and associated infrastructure


as described above, as well as any areas that may be used temporarily during construction (i.e. staging areas, crane pads, crane walks etc.) For the purposes of this report, NRSI will refer to the areas within 120m of the project location as the 'project area'.

In accordance with the Renewable Energy Approval (REA) Regulation, NRSI has conducted site investigations to identify and characterize water bodies (lakes, seepages, intermittent/permanent watercourses) within 120m of the project location and Lake Trout (*Salvelinus namaycush*) lakes within 300m of the project. Site investigations were conducted to confirm the presence/absence of water bodies identified during the records review (NRSI 2012), pinpoint any corrections to features identified during the records review, and document new water bodies not previously identified. Field investigations also focused on the characterization of the identified features.

As part of this project, NRSI has considered all aspects relating to provincially Threatened and Endangered species. However, since these species are addressed as part of the *Endangered Species Act* (2007), they have not been discussed within any of these Water Body reports. These species will be addressed in full detail, including a habitat description and results of field assessments, potential impacts, and recommended mitigation measures, as part of a separate *Approval and Permitting Requirements Document (APRD)* to be submitted to the OMNR under separate cover, where necessary.

2.0 REA Requirements

Ontario Regulation (O. Reg.) 359/09 – Renewable Energy Approvals Under Part V.0.1 of the Act, (herein referred to as the REA Regulation) made under the Environmental Protection Act (EPA) identifies the requirements for the development of renewable energy projects in Ontario. In accordance with REA regulations, the Bornish Wind Energy Centre, classified as a Class 4 wind facility, is required to complete a REA submission.

Section 31 (1) subject to subsection (2) of the REA Regulation requires proponents of Class 4 wind projects to undertake a water site investigation for the purpose of determining:

- (a) whether the results of the analysis summarized in the report prepared under subsection 30(2) are correct or require correction, and identifying any required corrections;
- (b) whether any additional water bodies exist, other than those identified in the records review;
- (c) the boundaries, located within 120m of the project location, of any water body that was identified in the records review or the site investigation; and
- (d) the distance from the project location to the boundaries determined under clause (c).

The REA Regulation has specific requirements if designated lake trout lakes are present within 300m of the Project site. These requirements were not deemed applicable to the Project as no such lakes were found during the Water Body Records Review Report (NRSI 2012).

Subsection (3) of Section 31 of the REA Regulations requires the proponent to prepare a report setting out the following:

- 1. A summary of any corrections to the report prepared under subsection 30 (2) and the determinations made as a result of conducting the site investigation under subsection (1).
- 2. Information relating to each water body identified in the records review and in the site investigation, including the type of water body, plant and animal composition and the ecosystem of the land and water investigated.
- 3. A map showing,
 - i. The boundaries mentioned in clause (1) (c) or (2) (c) and (d),
 - ii. The location and type of each water body identified in relation to the project location, and
 - iii. The distances mentioned in clause (1) (d) or (2) (e).

- 4. The dates and times of the beginning and completion of the site investigation.
- 5. The duration of the site investigation.
- 6. The weather conditions during the site investigation.
- 7. A summary of methods used to make observations for the purpose of the site investigation.
- 8. The name and qualifications of any person conducting the site investigation.9. Field notes kept by the person conducting the site investigation.

3.0 Staff Roles

The requirements of the REA Regulation indicate that the name and qualifications of all staff participating in the site investigation should be included, and are thus provided below.

Andrew G. Ryckman, B.Sc.

Andrew is a Terrestrial and Wetland Biologist with 7 years of environmental experience. He routinely manages the natural heritage aspects of renewable energy projects, with specific expertise relating to bats and herpetofauna. Andrew is certified in Ecological Land Classification (2010), and has successfully completed a Bat Conservation International (BCI) Acoustic Monitoring Workshop (2008).

Andrew's role in this project was to act as project advisor, providing input on field work and reporting as well as liaising directly with several agency staff.

Valerie Stevenson, Dip. Env.

Valerie is an Aquatic Biologist with over 9 years of experience in the environmental field. Her expertise is within the areas of freshwater aquatic habitat, biology of freshwater fishes, benthic macroinvertebrate organisms, surface water and sediment quality. Valerie designs, coordinates, manages, analyzes and reports on a variety of aquatic biology monitoring and assessment projects. She also works regularly on multidisciplinary project teams where she contributes her aquatic biology expertise with an integrated understanding of all environment components.

Valerie was the primary author and coordinated the completion of all water body reports.

Ashley Favaro, M. Env. Sc.

Ashley is an Aquatic Biologist with 8 years of work experience in the environmental field. Her areas of expertise include fish community and aquatic habitat assessments. She is experienced in a variety of different field data collection methods and has completed surveys in a number of different habitat types including lakes, coastal wetlands, reservoirs, large rivers, and streams with warm and coldwater fish assemblages. Ashley is certified in the Ontario Stream Assessment Protocol (OSAP) (2005) as well as level 2 fish identification (2010) under the protocol. She is also well versed in a variety of benthic invertebrate sampling protocols including Ontario Benthos Biomonitoring Network (OBBN) and has experience with species identification. Ashley regularly contributes to reports and routinely reviews scientific literature in support of projects.

Ashley was responsible for compiling data and assisting in the completion of reports.

Blair Baldwin, B.Sc.

Blair has two years of experience as an Aquatic Biologist. His areas of expertise include fish habitat surveys, habitat mapping, and fish community assessments, but he also has experience with benthic invertebrate surveys and species identification.

Blair was responsible for conducting the site investigations and data compilation.

Brian Watson, F.W.T.

Brian is an Aquatic Biologist with more than one year of work experience in the environmental field. His areas of expertise are fish and fish habitat surveys, environmental monitoring, and benthic invertebrate surveys. Brian has completed the fish identification course through the Royal Ontario Museum (2011) and obtained his Ontario Benthos Biomonitoring Network Certificate (2010).

Brian was responsible for completing site investigations, data compilation and assisting in the completion of this report.

Gina MacVeigh, F.W.T.

Gina is an Aquatic Biologist with more than 5 years of work experience in the environmental field. Her areas of expertise are fish habitat surveys, habitat mapping, and fish community assessments, but she also has experience with benthic invertebrate surveys and species identification. Gina has been certified to the level two fish identification (2010) under the Ontario Stream Assessment protocol, and has also obtained her Ontario Benthic Biomonitoring Network Certificate (2009). She has also completed the Fish and Species at Risk Identification courses through the Royal Ontario Museum (2009).

Gina was responsible for conducting the site investigations and data compilation.

Michael Ewaschuk, B.Sc.

Michael has over 10 years of experience in the field of aquatic ecology working for government agencies, non-profit organizations, Remedial Action Plans (Hamilton Harbour and Bay of Quinte), and private consulting firms. Michael has worked extensively with the Headwater Classification Guidelines (CVC and TRCA March 2009), which provide methodology to assessing flow permanency in drainage features, which is a key distinction between a water body and non-water body in the REA guidelines.

Michael was responsible for site selection, coordination of field work, overseeing field staff, analyzing data, and assisted in the completion of the report.

Charlotte S. Moore, B.E.S.

Charlotte is a Terrestrial and Wetland Biologist with three field seasons of experience in butterfly ecology and various other environmental projects. Charlotte has completed her Bachelor of Environmental Studies and is a candidate for a Master of Environmental Studies (2013) at the University of Waterloo. Her Masters research will involve measuring the success of past restoration efforts using butterfly abundance and diversity in the riparian zones of

several creeks. Other environmental projects Charlotte has worked on include the use of Ecological Land Classification (ELC), bat habitat assessments, breeding bird surveys and reptile studies.

Charlotte assisted with the reporting and habitat determinations for this project.

Kaitlin Boddaert, Dip GIS

Kaitlin specializes in delivering mapping services using GIS applications and assists with NRSI's spatial technologies. Her project experience includes, but is not limited to, the collection and creation of various datasets, the geocoding of addresses, the use of AutoCAD with integration into GIS, and the use of hard and soft data through scanning and georeferencing into digital format. Kaitlin has produced various digital maps and datasets for publication. She also has education and experience in the field of urban planning and is familiar with municipal mapping and procedures.

Kaitlin was responsible for creating all mapping for the water body reports.

4.0 Summary of Records Review

In accordance with the REA Regulation, NRSI has completed a comprehensive records review for the proposed Bornish Wind Energy Center project area (NRSI 2012). The results of this records review have been summarized in Table 1 below. For more detail the reader is referred to the complete report (NRSI 2012).

Table 1. Summary of Records Review of the Bornish Wind Energy Centre

Criteria	Associated Water Body Features
	The records review has identified 33 water bodies, including 28 within the Ptsebe Creek drainage area, 1 in each in the Galbraith Drain and Big Swamp Drain drainage areas and 3 in the Ausable River drainage area to be overlapping the project location.
i. In a water body	These overlaps typically represent proposed crossing locations for access roads, transmission line or cabling. All of these water bodies represent potential permanent or intermittent watercourses. All of which are designated as warmwater fisheries containing warmwater baitfish species.
	Each of these potential water bodies will be examined in more detail during the site investigation phase of this project.
ii. Within 120 m of the average annual high water mark of a lake, other than a lake trout lake that is at or above development capacity	None
iii. Within 300 m of the average annual high water mark of a lake trout lake that is at or above development capacity	None
iv. Within 120 m of the average annual high water mark of a permanent or intermittent stream	The records review has identified 54 water bodies, including 43 within the Ptsebe Creek drainage area, 2 within the Galbraith Drain drainage area, 1 within the Big Swamp Drain drainage area and 8 within the Ausable River drainage area to be within 120m of the project location. All of these water bodies represent potential permanent or intermittent watercourses, and all are designated as warmwater fisheries containing warmwater baitfish species.
iv. Within 120 m of a seepage area	None

5.0 Site Investigation Methodology

In accordance with the REA Regulation, comprehensive site investigations were carried out within the Bornish Wind Energy Centre project area. These site investigations focused on confirming presence/absence and extent of water bodies identified during the records review, identifying any corrections to water body mapping required including the identification of any previously unidentified features, and characterizing identified water bodies. Results of these site investigations will be used to identify proximity of water bodies to project components and identify requirements for mitigation and impact assessment.

A summary of site investigation methodology is found in following sections.

5.1 Survey Dates

In accordance with the REA Regulation, NRSI recorded dates, times, duration, and weather conditions during each site investigation. This information has been summarized in Table 2 below. Detailed descriptions of staff roles and qualifications can be found in Section 3.0 of this report, and completed site investigation field data forms have been included in Appendix I.

Table 2. Site Investigation Survey Details

	Date	Duration	Weather Conditions			
Staff Name(s)	(2011 & 2012)	(hrs)	Temp. (℃)	Beaufort Wind	Cloud Cover (%)	
Gina MacVeigh	Sept 20, 2011	8	18	0	30	
Gina MacVeigh	Sept 21, 2011	8	17	3	100	
Gina MacVeigh	Sept 22, 2011	8	17	1	70	
Blair Baldwin	Nov 2, 2011	8	10	2	30	
Blair Baldwin	Nov 3, 2011	8	8	0	0	
Blair Baldwin	Nov 4, 2011	8	5	0	10-40	
Brian Watson	Feb 21, 2012	4	1	4	100	
Brian Watson	March 30, 2012	4	7	5	90	

5.2 Lakes and Lake Trout Lakes

No lakes or Lake Trout lakes were identified during the records review. As such, no targeted site investigations were undertaken to characterize this feature type. General presence/absence surveys to confirm the absence of lakes were undertaken.

5.3 Permanent and Intermittent Watercourses

Prior to field investigations, potential intermittent/permanent watercourses were identified through review of all available natural features mapping as part of the records review (NRSI 2012). Field investigations were focused on confirming presence of these features as well as any additional watercourse features that may not be shown on existing mapping.

Once a watercourse feature was identified during site investigations, it was further assessed to determine if it meets the definition of a "water body" within the REA Regulation. Under this definition, a water body includes intermittent/permanent watercourses only, and does not include grassed waterways, temporary channels for surface drainage, such as furrows or shallow channels that can be tilled and driven through, rock chutes and spillways, or roadside ditches (that do not contain a permanent or intermittent stream).

Once a watercourse was identified as an intermittent/permanent watercourse, specific water body data was gathered during the site investigations. This involved walking the entire extent of each feature identified within the project area, and in many cases beyond to confirm its point of origin. For each feature, NRSI biologists collected a wide range of field information, including (but not limited to) wetted width, water depth, substrate, vegetation and habitat present, and any groundwater indicators. At each location, photographs and specific UTM coordinates were also taken.

5.4 Seepage Areas

No seepage areas were identified through the records review however the potential for such features to exist within the project area was recognized (NRSI 2012). Site investigations were carried out to identify the presence of seepage areas within the project area. These investigations were conducted concurrently with other water body site investigations as well as during wetland site assessments completed for the Natural Heritage Assessment, which also require the identification of potential seepage areas.

During site investigations, groundwater seepage areas were to be identified through a characterization of site-specific characteristics including direct observations of groundwater upwelling, the presence of groundwater indicator plant species (e.g.

watercress (Nasturtium officinale), dense patches of jewelweed (Impatiens capensis), or iron-staining of soils and substrates.

6.0 Site Investigation Results

NRSI biologists completed a comprehensive site investigation of the aquatic resources within the Bornish Wind Energy Centre project area. These surveys have been completed in accordance with the REA Regulation and the results have been summarized below.

6.1 Lakes

6.1.1 Lake Trout Lakes

Site investigations confirmed the absence of any Lake Trout Lakes.

6.1.2 Other Lakes

Site investigations confirmed the absence of any lakes within the project area.

6.2 Permanent or Intermittent Watercourses

NRSI biologists have confirmed a total of 25 permanent or intermittent watercourses within the project area. Of these, 18 have been identified as overlapping the project location, including proposed crossing locations of access roads and/or cabling. The remaining 7 watercourses range in distance from the project location from 6m to 119m, without any direct overlap with project components. For the purposes of this report, these watercourses have been divided and discussed based on their respective drainage areas which include Ptsebe Creek (a tributary of Parkhill Creek), Ausable River, Big Swamp Drain and Galbraith Drain. Where specific water body locations are discussed, a unique identifier (WB) has been attributed. These locations and watercourse features are shown on Figures 1-3. Watercourses are summarized by their respective drainage areas and are discussed in Sections 6.2.1. to 6.2.4.

Site investigation field notes are provided in Appendix I. Water body site investigation photographs are provided in Appendix II. Detailed habitat information specific to each water body location is provided in Appendix III.

6.2.1 Ptsebe Creek

The records review had identified a total of 43 unnamed tributaries associated with Ptsebe Creek within the project area (NRSI 2012). All of these features are designated as warmwater (Veliz 2001) with warmwater baitfish species (ABCA 2007), and are shown on Figures 1-3.

NRSI biologists conducted site investigations on these 43 potential water bodies and have confirmed that 22 features have characteristics that are consistent with designations of water bodies, as defined by the REA Regulation. A total of 7 of these features are considered water bodies at some locations within the project area and non-water bodies at other locations. The mix in water body consideration is due to the nature of headwater features and the resulting changes in permanency and definition of the feature. A total of 21 features are not considered water bodies. A summary of site conditions associated with all features considered during the site investigation, including distances to project location, is provided in Table 3 below.

Table 3. Water Body Site Investigations Summary for Bornish Wind Energy Centre Project Area – Ptsebe Creek Drainage Area

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
Tributary	WB1	tile drained, no water body feature present	N/A	No	No
В	WB105	body leature present	N/A	No	No
Tributary C	WB16	intermittent/permanent water body with a defined channel	WT- 50 AR- Crossing OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
Tributary	WB4	no water body feature present	N/A	No	No
D	WB17	intermittent/permanent water body, channelized	WT- >120 AR- Crossing OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
Tributary E	WB2	tile drained, no water body feature present	N/A	No	No

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
	WB3	tile drained, no water body feature present	N/A	No	No
Tributary F	WB18	tile drained, no water body feature present	N/A	No	No
	WB21	tile drained, no water body feature present	N/A	No	No
Tributary G	WB26	intermittent/permanent water body, channelized	WT- >120 AR- >120 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
	WB27	intermittent/permanent water body, naturalized channel	WT- >120 AR- >120 OL- >120 UL- 36 CA- 22 BU- >120	Yes	Yes
Tributary H	WB15	ephemeral, swale, no defined channel	N/A	No	No
	WB19	defined channel	N/A	No	No
	WB20		N/A	No	No
Tributary I	WB5	ephemeral, swale through agricultural field (soy bean crop)	N/A	No	No
Tributary J	WB7	tile drained, agricultural pond, no water body feature present	N/A	No	No
	WB8	ephemeral, headwater	N/A	No	No
Tributary K	WB23	drainage feature influenced by tile drainage	N/A	No	No
Tributary L	WB24	ephemeral, grassed drainage ditch	N/A	No	No

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
	WB28	intermittent/permanent water body, aquatic vegetation, fish observed	WT- >120 AR- >120 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
	WB36	intermittent/permanent water body, naturalized channel	WT- >120 AR- >120 OL- >120 UL- 41 CA- 32 BU- >120	Yes	Yes
Tributary M	WB25	intermittent/permanent water body with very little flow, channelized,	WT- >120 AR- Crossing OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
IVI	WB29	aquatic vegetation present	WT- >120 AR- 27 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
	WB30	intermittent/permanent water body, channelized, aquatic vegetation present and fish observed	WT- >120 AR- 95 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
Tributary N	WB31	intermittent/permanent water body, channelized, aquatic vegetation present and fish observed	WT- 37 AR- Crossing OL- >120 UL- 45 CA- 63 BU- >120	Yes	Yes
	WB104	intermittent/permanent water body, channelized drain feature	WT- >120 AR- Crossing OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
	WB11	ephemeral, poorly defined channel, terrestrial grasses throughout	N/A	No	No
Tributary O	WB12	intermittent/permanent water body, naturalized defined channel, within wooded area	WT- >120 AR- >120 OL- >120 UL- >120 CA- 71 BU- >120	Yes	Yes

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
	WB103	Intermittent/permanent water body, channelized drain feature	WT- >120 AR- Crossing OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
Tributary P	WB10	tile drained, no water body feature present	N/A	No	No
	WB32	intermittent/permanent	WT- >120 AR- >120 OL- >120 UL- 36 CA- 17 BU- >120	Yes	Yes
Tributary Q	WB33	water body, channelized	WT- >120 AR- >120 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
Q	WB34	intermittent/permanent water body, naturalized channel, through wooded area	WT- >120 AR- >120 OL- >120 UL- >120 CA- 103 BU- 105	Yes	Yes
	WB35	intermittent/permanent water body, channelized	WT- >120 AR- >120 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
Tributary	WB13	intermittent/permanent water body, naturalized channel, some meandering, online pond located near WB14.	WT- >120 AR- >120 OL- >120 UL- >120 CA- 118 BU- >120	Yes	Yes
R	WB14		WT- >120 AR- >120 OL- >120 UL- >120 CA- 117 BU- >120	Yes	Yes
Tributary	WB37	intermittent/permanent water body, aquatic vegetation	WT- >120 AR- >120 OL- 14 UL- >120 CA- 13 BU- >120	Yes	Yes
S	WB38	intermittent/permanent water body, aquatic vegetation	WT- >120 AR- >120 OL- Crossing UL- >120 CA- Crossing BU- >120	Yes	Yes

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
	WB66		WT- >120 AR- >120 OL- >120 UL- 28 CA- 14 BU- >120	Yes	Yes
	WB39	intermittent/permanent water body, fish observed	WT- >120 AR- >120 OL- Crossing UL- >120 CA- Crossing BU- >120	Yes	Yes
Tributary T	WB44	intermittent/permanent water body, channelized	WT- >120 AR- >120 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
	WB58	ephemeral, channelized ditch, influenced by tile drainage	N/A	No	No
	WB59	tile drained, no water body feature present	N/A	No	No
Tributary	WB56	ephemeral, grassed	N/A	No	No
U	WB57 WB65	- waterway/swale	N/A N/A	No No	No No
	WB65	intermittent/permanent water body, naturalized channel	WT- >120 AR- 51 OL- >120 UL- 69 CA- 25 BU- >120	Yes	Yes
Tributary V	WB43	intermittent/permanent water body, channelized	WT- >120 AR- >120 OL- >120 UL- >120 CA- 95 BU- >120	Yes	Yes
	WB45	intermittent/permanent water body, channelized	WT- >120 AR- >120 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
	WB46	intermittent/permanent water body, channelized	WT- >120 AR- >120 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
	WB49		WT- >120 AR- >120 OL- >120 UL- 98 CA- 91 BU- >120	Yes	Yes
	WB50	intermittent/permanent water body, channelized tile drain outlet	WT- 119 AR- Crossing OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
	WB51	tile drained, no water body feature present	N/A	No	No
Tributary W	WB47	ephemeral, drainage channel	N/A	No	No
Tributary X	WB48	ephemeral, drainage channel	N/A	No	No
	WB53	ephemeral, swale through agricultural field	N/A	No	No
Tributan	WB54	ephemeral, drainage channel through agricultural field	N/A	No	No
Tributary Y	WB55	ephemeral, drainage channel through agricultural field	N/A	No	No
	WB60	ephemeral, drainage channel through agricultural field	N/A	No	No
	WB63	tile drained, no water body feature present	N/A	No	No
Tributary Z	WB52	ephemeral, small drainage channel through agricultural fields	N/A	No	No
Tributary AA	WB67	intermittent/permanent water body, naturalized defined channel, fish observed	WT- >120 AR- >120 OL- Crossing UL- >120 CA- Crossing BU- >120	Yes	Yes
Tributary	WB69	tile drained, no water body feature present	N/A	No	No
ВВ	WB70	tile drained, no water body feature present	N/A	No	No

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
	WB73	intermittent/permanent water body, channelized, flows through agricultural field	WT- >120 AR- 31 OL- >120 UL- >120 CA- 9 BU- >120	Yes	Yes
	WB74	intermittent/permanent water body, channelized, flows through agricultural field	WT- >120 AR- >120 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
Tributary CC	WB68	intermittent/permanent water body, channelized, flows through agricultural field	WT- >120 AR- >120 OL- >120 UL- >120 CA- 95 BU- >120	Yes	Yes
Tributary DD	WB71	ephemeral, small drainage feature through agricultural fields	N/A	No	No
Tributary EE	WB72	ephemeral, small drainage feature through agricultural fields	N/A	No	No
Tributary FF	WB75	intermittent/permanent water body, channelized, flows through agricultural field	WT- 82 AR- 43 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
Tributary	WB76	intermittent/permanent water body, aquatic vegetation present,	WT- >120 AR- 21 OL- >120 UL- Crossing CA- Crossing BU- >120	Yes	Yes
GG	WB77	channelized, fish observed	WT- >120 AR- 21 OL- >120 UL- >120 CA- 6 BU- >120	Yes	Yes
Tributary HH	WB78	intermittent/permanent water body, aquatic vegetation present, channelized, fish observed	WT- >120 AR- 62 OL- >120 UL- >120 CA- 49 BU- >120	Yes	Yes
Tributary II	WB80	tile drained, no water body feature present	N/A	No	No

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
	WB81	intermittent/permanent water body, channelized	WT- >120 AR- >120 OL- Crossing UL- >120 CA- Crossing BU- >120	Yes	Yes
	WB82	ephemeral, small drainage feature through agricultural fields	N/A	No	No
Tributary JJ	WB83	ephemeral, small drainage feature	N/A	No	No
Tributary	WB84	intermittent/permanent water body, channelized,	WT- >120 AR- >120 OL- Crossing UL- >120 CA- Crossing BU- >120	Yes	Yes
KK	WB85	flows through agricultural fields	WT- >120 AR- >120 OL- 21 UL- >120 CA- Crossing BU- >120	Yes	Yes
Tributary LL	WB79	intermittent/permanent water body, channelized, flows along agricultural fields	WT- >120 AR- >120 OL- 101 UL- >120 CA- >120 BU- >120	Yes	Yes
Tributary MM	WB86	ephemeral, channelized drainage feature through agricultural fields	N/A	No	No
Tributary NN	WB87	ephemeral, channelized drainage feature through agricultural fields	N/A	No	No
Tributary OO	WB88	ephemeral, channelized drainage ditch along road	N/A	No	No
Tributary SS	WB9	tile drained, no water body feature present	N/A	No	No
Tributary TT	WB40	intermittent/permanent water body, partially channelized, fish observed	WT- >120 AR- >120 OL- 19 UL- >120 CA- 14 BU- >120	Yes	Yes
Tributary WW	WB41	tile drained, no water body feature present	N/A	No	No
	WB22	tile drained, no water body feature present	N/A	No	No

Legend WT- Wind Turbine AR- Road Access

OL- Overhead Line (transmission line)
UL- Underground Line
CA- Construction Activity (includes crane walk, and staging and disturbance areas)

BU- Building (includes substation and interconnection point)

N/A- Not Available

*Note: Bold indicates a requirement for an EIS. Measurements are taken from the closest distance to a water body from a given project component, and not necessarily from the specific location of the site investigation.

6.2.2 Ausable River

The records review identified a total of 8 unnamed tributaries of the Ausable River within the project area (NRSI 2012). All of these features are designated as warmwater with warmwater baitfish species (ABCA 2007).

NRSI biologists conducted site investigations on these 8 potential water bodies and have confirmed that 1 of these features has characteristics that justify a designation as a water body, as defined by the REA Regulation and 7 do not. A general summary of all 8 features considered as part of the site investigation, including distances to project location, is provided in Table 4 below.

Table 4. Water Body Site Investigations Summary for Bornish Wind Energy Centre Project Area - Ausable River Drainage Area

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Location Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
Tributary PP	WB66	tile drained, no water body feature present	N/A	No	No
Tributary QQ	WB64	tile drained, no water body feature present	N/A	No	No
Tributary	WB61	ephemeral, poorly defined drainage ditch	N/A	No	No
RR	WB62	ephemeral, poorly defined drainage ditch	N/A	No	No
Tributary UU	WB95	Intermittent/permanent water body, natural meandering watercourse	WT- >120 AR- 84 OL- >120 UL- >120 CA- 75 BU- 117	Yes	Yes
Tributary VV	WB101	Not present, tile drained	N/A	No	No

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Location Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
Tributary XX	WB102	Not present, tile drained	N/A	No	No
Tributary YY	WB100	Not present, tile drained	N/A	No	No
Tributary	WB98	Not present, tile	N/A	No	No
ZZ	WB99	drained	N/A	No	No

Legend

WT- Wind Turbine

AR- Road Access

OL- Overhead Line (transmission line)

UL- Underground Line

CA- Construction Activity (includes crane walk, and staging and disturbance areas)

BU- Building (includes substation and interconnection point)

N/A- Not applicable

*Note: Measurements are taken from the closest distance to a water body from a given project component, and not necessarily from the specific location of the site investigation.

6.2.3 Big Swamp Drain

The records review has identified a total of one water body associated with the Big Swamp Drain within the project area, the Big Swamp Drain itself (NRSI 2012). This feature is designated as warmwater with warmwater baitfish species (ABCA 2007).

NRSI biologists conducted site investigations on the identified water body feature and have confirmed that the drain has characteristics that warrant the designation as a water body. A general summary of this feature is provided in Table 5.

Table 5. Water Body Site Investigations Summary for Bornish Wind Energy Centre Project Area – Big Swamp Drain

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Location Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
Big Swamp Drain	WB97	Intermittent/permanent watercourse, channelized drain	WT- >120 AR- >120 OL- Crossing UL- >120 CA- Crossing BU- >120	Yes	Yes

Legend

WT- Wind Turbine

AR-Road Access

OL- Overhead Line (transmission line)

UL- Underground Line

CA- Construction Activity (includes crane walk, and staging and disturbance areas)

BU- Building (includes substation and interconnection point)

*Note: Measurements are taken from the closest distance to a water body from a given project component, and not necessarily from the specific location of the site investigation.

6.2.4 Galbraith Drain

The records review has identified a total of 2 watercourses associated with the Galbraith drainage area within the project area (NRSI 2012). Both of these features are designated as warmwater with warmwater baitfish species (ABCA 2007).

NRSI biologists conducted site investigations on the identified watercourse features and have confirmed that one of these watercourses has characteristics that warrant a designation as a water body. A general summary of both of the features considered as part of the site investigation, including distances to project location, is provided in Table 6 below.

Table 6. Water Body Site Investigations Summary for Bornish Wind Energy Centre Project Area – Galbraith Drain

Water Body Feature Name	Water Body Location ID	Description of Water Body at Water Body Location	Distance to Project Location Component (m)	Water Body (Yes/No)	EIS Required (Yes/No)
	WB89	ephemeral, grassed waterway through	N/A	No	No
Galbraith	WB90	agricultural field	N/A		
Drain	WB91		N/A	No	No
	WB92	ephemeral, channelized ditch for drainage	N/A	No	No
Tributani	WB93	intermittent/permanent,	WT- 33 AR- 41 OL- >120 UL- 86 CA- 20 BU- >120	Yes	Yes
Tributary A	WB94	channelized	WT- >120 AR- >120 OL- >120 UL- >120 CA- >120 BU- >120	No	No

<u>Legend</u>

WT- Wind Turbine AR- Road Access

OL- Overhead Line (transmission line)

UL- Underground Line

CA- Construction Activity (includes crane walk, and staging and disturbance areas)

BU- Building (includes substation and interconnection point)

*Note: Measurements are taken from the closest distance to a water body from a given project component, and not necessarily from the specific location of the site investigation.

6.3 Seepage Areas

No seepage areas were identified during the extensive site investigations that were completed at the Bornish Wind Energy Centre.

7.0 Modifications to the Records Review

Results of the site investigation led to the classification of several potential water bodies depending on the observed site-specific conditions. These modifications are discussed further below.

The records review identified a total of 43 unnamed tributaries associated with Ptsebe Creek within the project area as potential water bodies (NRSI 2012). Findings of the site investigations confirmed that of these 43 tributaries, 22 have been confirmed to have at least some habitat that warrants water body classification and warrant further consideration as part of the Environmental Impact Study (EIS). The remaining 21 features have been confirmed to be agricultural swales, temporary drainage, or grassed waterways that do not warrant consideration in the EIS in accordance with the REA Regulation.

The records review identified a total of 8 unnamed tributaries of the Ausable River within the project area as potential water bodies (NRSI 2012). Findings of the site investigations confirmed that 7 of the 8 tributaries are not considered water bodies and will not be considered as part of the EIS, while one does warrant further consideration in the EIS.

The records review identified a total of 2 watercourses associated with the Galbraith drainage area within the project area as potential water bodies (NRSI 2012). Findings of the site investigations confirmed that 1 of these features is considered a water body and warrants further consideration within the EIS.

8.0 Summary of Site Investigation

In accordance with the REA Regulation, NRSI has completed water body site investigations for the proposed Bornish Wind Energy Centre project area. Site investigations were conducted to confirm the presence/absence of water bodies identified during the records review (NRSI 2012), pinpoint any corrections to features identified during the records review, and document new water bodies not previously identified. Field investigations also focused on the characterization of the identified features. The results of this records review have been summarized in Table 7 below.

Table 7. Summary of Water Body Site investigations for the Bornish Wind Energy Centre

Criteria	Associated Water Body Features
	Site investigations have identified 17 water bodies within the Ptsebe Creek drainage area and 1 within the Big Swamp Drain drainage area that are overlapping the project location.
i. In a water body	These overlaps represent proposed crossing locations for access roads, transmission line or cabling. All of these water bodies represent permanent or intermittent watercourses. All of which are designated as warmwater fisheries containing warmwater baitfish species.
	Each of these potential water bodies will be discussed in detail as part of the Environmental Impact Study.
ii. Within 120 m of the average annual high water mark of a lake, other than a lake trout lake that is at or above development capacity	None
iii. Within 300 m of the average annual high water mark of a lake trout lake that is at or above development capacity	None
iv. Within 120 m of the average annual high water mark of a permanent or intermittent stream	Site investigations have confirmed the presence of 25 water bodies within the project area, including 22 within the Ptsebe Creek drainage area, 1 within the Ausable River drainage area, 1 within the Big Swamp Drain drainage area and 1 within the Galbraith Drain drainage area.
	All of these water bodies are designated as warmwater fisheries containing warmwater baitfish species. All will be discussed in more detail within the Environmental Impact Study
iv. Within 120 m of a seepage area	None

9.0 References

- Ausable Bayfield Conservation Authority. 2007. Lower Parkhill Watershed Report Card. (ABCA 2007).
- Natural Resource Solutions Inc. January 2012. Bornish Wind Energy Centre Water Body Report – Records Review. (NRSI 2012)
- Ontario Ministry of Natural Resources. 2006. Inland Ontario Lakes Designated for Lake Trout Management. Available at: http://www.ontla.on.ca/library/repository/mon/14000/262222.pdf. Accessed December 9, 2010
- Veliz, M. 2001. Fish Habitat Management Plan. Ausable-Bayfield Conservation Authority. (Veliz 2001).

Append Site Investigation Field No	lix I

SOLUTIONS INC.

Renewable Energy Water Body Site Investigation

PAGE 1 of

		Photo #	1481 1482 1983	98H! S8H h8h!		1667 8641 86/71	4661 Has	1500. 1501 1508	1506 1507 508
End Time: / 4/00		Groundwater and prolonged wetness indicators (seeps, springs, veg, temp of spring vs watercourse)	-NOTES COLLOIS PIESENT Into Mittent Water course	1497 1/5 Frank		Not Binsh		41/00/ 2010 SOM) U/S. (Westory Users) 1503-1505	intermittent.
		Coverage of Terrestrial grasses in the	channel	30%		95	0/	→ ´	(North
Start Time:/0/S		Substrate % (fine, gravel, cobble, boulder)	500	10% cobble 40 Gavel 5% fine		100% Fine	10-cobble 30-Gravel 60-fine	->	50-02% 80-5-5-c
- 1/ Sta		Turbidity (L/M/H)	7	1	4	1	1	>	1
-434-		Hydrastic Head in Thaiweg (cm)	hh= 0-3 ww= 7-5 depth=3(hh=< 1 ww=90 depth=//		hh= <br ww= 7. depth=	hh=0.1 ww=56 depth70	hh= , ww= v depth=	hh=0.16 ww=160
Date 12-Feb	Cloud Cover	Flowing water (Y or N)	>	>		X (42)	>	>	>
0	3	Water present (Y or N)	>	>	•	>	>-	->	>
rian W	200	Max water depth (cm)	če 72	00	t	1	9-	\rightarrow	8/
Crew: Brian	Prec	Avg. Wetted width (m)	-	4.0	1	50	590	->	h
ornish	Wind	Max channel depth (m)	5	075		0 98	0.5	\rightarrow	<u>+:</u>
Project Name: Bornish	Air temp 33°F	Bankfull width (m) Deffned channel (Y or N)	3.83	- >	1	10 0 2 m	1000	→	5
		GPS	.\	1		1	Nomesund		1
Project # /23	Weather Over CA	Sife #	30	7-1	16	53	88	179 179	W.B.

Note No proporty 1 = 5

WB lacyton solle

	Channel	1514			11					
# 01			7				-		-	
Photo #	d/s	1573 (SE)	1516							
	u/s	ISB SE	1509 1510							
Groundwater and prolonged wetness indicators (seeps, springs, veg, tenn of springs vs	watercourse) -NOTES-	OHAILS AGENT	1511-415 of RINTING BARMAI THE		,					
% Coverage of Terrestrial	the	100	1							
Substrate Sorting (H/M/L)		100 Fine	1							
Turbidity (L/M/H)		7	/							
Hydraulic Head in Thalweg (cm)		hh= O ww=/ depth=/	hh= ww=/ dgpfh=	hh= ww= depth=						
Flowing water (Y or N)) reg/shw	1							
Water present (Y or N)		1	1							
Max water depth (cm)		19	1							
Wetted width (m)		Q			1					
Max channel depth (m)		1	1							
Bankfull width (m) Defined channel	(X or N)	(S)	1							
GPS			\							
Site #		300	or an		A H					

moo.nis.HatiteintheRain.com	
AW , AMOJAT , 4AOJ BMIJAA	7.1

(g) :		Jan Jan	July Sur	
100	Saffail S	water		
Grion 12	7	2007	. 0 0	
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	or water	3 -
	March	W Howing	Designation of with	water Diesen.
200				300
-Water Body Pssessment	Flowing water	No against very	Most no Closed Sons School Sch	No Chand ar Walk or Gold 4 Very little water
1		6 6 7		No channel ac Walk or Gold Pery Lithe water
nis h	Flowing	300	A SE	No or walk or very life
3051		WB4 - Defined Channel No against vee	- Phrost	
	Notes weag	274		9
1231-130rnish	3 3	3	W&II	WB10
1.	1 1 1	AV	DARLING CORP. TACOMA. / www.RiteintheRain.com	

2000	4			
S TILL S	The state of the s	Flows	8	
3	Jesto d WASM	T.	survey:	
Son	01870	63	Sie	
	ot 0	Readside	nio fo	
	82		mappin	
799 83	88 88	28	200	

PAGE 1 of 4

Renewable Energy Water Body Site Investigation

NATURAL RESOURCE SOLUTIONS INC.

Aquatic, Terrestrial and Wetland Biologists

Date DA-Mov-11 Project Supervisor Survey end time: 1830 time: 0800 Survey start Cloud Cover 33 Crew: Precipitation Project Name: Air temp 1331 Project # Weather

Chann el 76 <u>~</u> 5 000 5 14 q/s ર્જો -E 10 12 S 2 S/n = -9 Carry \simeq (seeps, springs, veg) Groundwater indicators 9 NOTES no Ortin no Defe no mater no unti Chapa 1.00 1316 In-channel vegetation (% and type) (i.e. terrestrial vs 103.15300 3 8 8 6 1 5 5 6 6 6 aquatic) 1,00 500 Fres dol' 1200 Channel Gradient (H/M/L) Channel Morphology (% pool, glide, slow riffle, fast 90% c,t. 1 4 1 9 00 5%6 12/16 10,00 0/28 Water Substrate
Clarity %'s (to equal (L/M/H) (100%) 30% 664 9.8% F 82 F 307.1 1001 3 ξ Refuge pool dimen-sion Y or N discharge present estimate Visual 1 (I'/s) Indicate an X for yes and a strike through for no or not applicable

Site # GPS Bankfull Max Wetted Max V width thannel water di 0.05 (J.d.F. 0.5 water depth (cm) Q Q 32 --Ê Bornsh Wind 4-0 2.75 0.3 depth m) Bankfull Max width thanne (m) depth ~ 6.0 نې مې 10 4 439422 HTTATAG 1913111 440468 tobatth 411374 440871 L 73065 0t 111 h 440915 -11 1 AHPG AHBO AHP59 AFIP 64 AHPC3 AHPCI

Site #	GPS	Bankfull width (m)	Max bankfull depth [m]	Wetted Max width water (m) depth (cm)	Max water depth (cm)	Visual Water discharge present estimate (Y or N) + (L/s) + Refuge		Water Clarity (L/M/II)	Water Substrate Clarity %'s (to equal (L/M/H) (100%)	Channel Morphology (% pool, glide, slow riffle, fast	Channel Gradient (H/M/L)	In-channel vegetation (% and type) (i.e. terrestrial vs aquatic)	Groundwater indicators (seeps, springs, veg)	~6	Photo#	
	¥						pool dimen- sion			riffle)			NOTES	s/n	s/p	Chann
AHP66	177 141 100 100 100 100 100 100 100 100 100	4	7	0.	4:0	د	>_	E	2026 2026 107.0	30% S.R 40% 3 30% P	7	30% And 70% T	à	25	9/9	d7
AHPGF	(子) (中) (大) (大) (十) (十) (十) (十) (十) (十) (十) (十) (十) (十	6.1	اباره	A A	4.0	_1	>_	£	\$07.F	102 61	_1	Na	30° Cyprisis	38	23	30
AHPGB	1413 Job 1213 G160	11.5	7	4	_	7	>	I	60%F 30% gran	80% pal	٦-	1 201	204 cybunil.	77	55	55
AHIPO	17 T T T T T T T T T T T T T T T T T T T	6	13	Lè	Ö	1	7	エ	70% 20% F 10% C	10/21 201,5R 75, Por	د	1 250}	They		5	17
AHP70	H 1	و ا	1-1	~6	70	×	3,43,50		902F 10%G	d 2001	_	1 100	Netha 181	N. 2	813	-
崖	17. 19.01 19.02 19.03 10.03 10	4	0.1	70	30.0	> <	*	Ε	80% (in	8026 90% SA		9%T	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	M;	7,	20
AHPA	188 ALL 1988	٠٠ -	lo T	0.74	0	and .	7	I	20% 95	90% 6 102 SR	1	T 201	ć.	4	14 17	4
AHP73	17.7 Fult 191 4775055	4	69	0.3	0.0	٦	>	Ξ	100% Fire	9 201	Т	T 2001	- 3	57	-23 2	м.
411674	177 4775042 1775042	(.a	7.	1.7	0.95	7.	>	I	-4 209 -4 209	20% SR 807 6	4	L 7,00)	30t cyphand	1. 0.	Ġ	Ĕ
AHP75	177 443&3 4773649	3,0	9.0	D,T,	50,05	×	Y 0.5,601	E	90%F	For for	٦	1 1/2 1	1	forest.	Ğ	28

NATURAL RESOURCE SOLUTIONS INC.

Renewable Energy Water Body Site Investigation PAGE of 4

Aquatic, Terrestrial and Wetland Biologists

Chann el 2 Photo # 78 d/s Date 04 - 110v - 11 £ 8.8 £ \$ 4 mm 3 2882 女 n/s (seeps, springs, veg) Shannil Jarka Groundwater con griffeet was 1 indicators NOTES Chund Ur Sustan no Sura Tile Our Mosteria Session S f 20 DO 20 vegetation (% and type) (i.e. terrestrial vs In-channel -6 Km aquatic) Not 1 300 1. 640 146 1 2001 toors T. Emiss 10% 15mm Project Supervisor 100% Survey end time: 182 Channel Gradient (H/M/L) Channel Morphology 150% Sunfer glide, slow riffle, fast riffle) (% pool, 080 1.28 SH. Survey start time; ORG Substrate %'s (to equal 100% F Water Substrat Clarity %'s (to (L/M/H) 100%) Cloud Cover 30 I Crew: Refuge pool dimen-(V or N) present sion > > 7 > Visual discharge estimate Precipitation & ړ Indicate an X for yes and a strike through for no or not applicable Wetted Max
width water
(m) depth
(cm) 0.09 Wind 1 Max channel depth 4.0 Project Name: Bankfull width (m) 1.5 Air temp 444720 4773463 4733438 442697 4773165 44333 498444 177 177 177368 UZZZZEO 444119 1 100 177 [+] 17 GPS Weather AHPORD AHPON ATPORT 474 4TP 4HP 076 240

3

105

3

no Visite

7.6113

(* £

3

1007

IN'S FINE

Z

٥

5.7

50

15

4773 864

445 837

171

HOOM

おりなってさら

445837

4

Site #	CPS	Bankfull width (m)	Max bankfull depth m)	Wetted Max width water (m) depth (cm)	water depth (cm)	Visual discharge estimate (L/s)	Visual Water discharge present estimate (Y or N) (L/s) + + (Refuge pool dimension	Water Clarity (L/M/H)	Water Substrate Clarity %1's (to equal (L/M/H) (100%)	55% 454	Channel Morphology (% pool, gilde, slow riffle, fast riffle)	>	Channel y Gradient (H/M/L)	Channel In-channel y Gradient vegetation (% and type) (i.e. terrestrial vs aquatic)	Channel In-channel Groundwater y Gradient vegetation (% and indicators (H/M/L) type) (i.e. (seeps, springs, terrestrial vs veg) aquatic) NOTES u/s	Channel In-channel Groundwater y Gradient vegetation (% and indicators type) (i.e. (seeps, springs, terrestrial vs veg) aquatic) NOTES
Анряо	17T	7.	শ্ৰ	603	ويق	٤	>	I	\$ <i>0</i> % €~~ 20% for	303 G11	~ 🛎	ين الله		.4	200 Aqualit 800 Termanus	20% Termbus
4HP 0 8/	177	9,3	75	9.0	0-13	٦	>	٤	BG front 60% from 20% grang	90% ghi?		7	1007 Tombin		1007 Famet. 11	100% Famet. 11 12.4.
AHLOS	\$015EEA £599AH £2]	4,3	+	ç	700	-1	7	r	70%-fin 30% yruni	80% G1.7		٦	L 1027.6149		1027.6ran	1602 T. Gran
AHPOS	177 44 7526 4776133	*	तं	1.9	4.0	0	`	1	80% fire	92 FLA PROVI		٦.		2001	L 1007 Tounti	L 1008 Tombi MA
AHlosn	17T 445022 4774826	h.4	5	>	×	×	N	×	1003 Fir	X		×	160% Jurest.	100% Jenst My		٦
AHPOSS	1771 1068759 1068759	5.0	~	3	6.0		~	ξ	\$05 Fi. 204 € 9mg	12 22 En		7	10% Agrass	204	40% gyrut 60% Town	40% gyrate An
4 HP 1846	[+T]	1.6	~	3	0.8	0	*	ξ	90%.h.	100% Roal		-1	L 100% Theory 1	reds	1803 Townson	letz Transis hin
A HEDBJ	771 1900 177	0,4	<u>~</u>	ত্র	03	1	^		100% File	902 Pu)		ــــا	100% Tamptog	1,001	100% TAMP + - 4	loof Tomston
7-4-10 ONS	121 144444 141	×	×	>	~	×	>	×	×	×		\times	(06% Trynsthul	1002 Timesterni Grast		griss.
	15484h	×	><	>	>شر	\geq	₹×	<i>></i> <	×	X		>	late Jennin	1086 Erstr 1 no changes forth		No Churd/Soffee metrum f

PAGE of

NATURAL RESOURCE SOLUTIONS INC.

Aquatic, Terrestrial and Wetland Biologists

Renewable Energy Water Body Site Investigation

Project #	1031	Project Name:	пе: Печи	11.0	3			Ğ	Crew: Be B	9.		Project Supervisor	pervisor	Date	110/6-NON-40	John	
Weather	X for ver	Weather Air temp Wind Precipitat	through	Wind	P Pour	Precipitation	tion	33	Cloud Cover	115020	of 45	Survey end time: 13 00	D.				
Site # G	GPS	Bankfi width (m)	Bankfull N width ct (m) h	Max channel depth (m)	Wetted Max width wate (m) depti (cm)	Max water depth (cm)	ischarge stimate L/s)		Water Substra Clarity %'s (to (L/M/H) 100%)	Substrate %'s (to equal 100%)	Channel Morphology (% pool, glide, slow	Channel Gradient (H/M/L)	In-channel vegetation (% and type) (i.e. terrestrial vs	Groundwater indicators (seeps, springs, veg)		Photo #	
								pool dimen- sion			riffle)			NOTES	s/n	s/p	Chann
	(77 438211 4773238	398	~	\times	×	×	><	>	>	>	\rightarrow	\times	100% Tenstry	\times	126	377	E ST
15	0809tth 080010 Lt1		28	17	~	¥,0		>	E	402 grand	80% Pa	-1	book Tenshir	d.	d 74	975	376
4 HP 057	17T 448300 4972699		رم. رئ	7-	6.9	Oas	-1	~	£	my 2001	(100) Priv	د	loss Tarshy	Chub) zee Dith	铁	273	416
1.5	45 HAN 771	69 1.45	Je.	0.65	4.0	Ťro	1	7	٤	80% fh.	408 914 30% 51-8.11	-1	100% Tensits 4	Aq	281	982	des
AHP 090	17 43 773 4768309	773 4.3		-,4	~	6.0	٦	7	I	10% fly to ship 30% edit	60% P.11 30% 314 102 512 A.A.	_	1889 Training	Fest. Barrelle	384	ર્જક - ક	986
AHP 13	177 (43436 4770697	36 13.0	o,	3.1	10.1	A.3	0	~	7	40% ft. 107 8-11. 387,010.	90% fal	٦	Turkd to too	ስ»	To rs	64.79	\$0 \$1
AHB OSS	141844 141 14769740		86.88	Too Orep To mass.	33.0	2000		*		Twitz by	100 St. 2014	-1	Total for by term	£	3,80	5/8	8

GPS	Bankfuli width (m)	Max bankfull Jepth m)	Wetted Max width water (m) depth (cm)	Max water Jepth (cm)	Visual Water discharge present estimate (Y or N) + (L/s) Refuge	Wafer present (Y or N) + Refuge	Water Clarity (L/M/H)	Water Substrate Clarity %3 (to equal (L/M/H) 100%)	Channel Morphology (% pool, glide, slow riffle, fast	Channel Gradient (H/M/L)	In-channel vegetation (% and type) (i.e. terrestrial vs	Groundwater indicators (seeps, springs, veg)	R	Photo #	
						pool dimen- sion			riffle)			NOTES	s/n	s/p	Chann
171	Orthod	>	>	\sim	\nearrow	>	\times	المريا لجان	X	1	104ms 204	No visto ou Aris chima	393	294	295
(77) (44) 358	t,	2.4	5.9	<u>+</u> 2	-	7	700	80% ft	in looses	7	100% Emiriq	72	3%	464	398
17T 439980 4263300	<u>></u>	X	~	×	×	Z	_ ×	×	*	7	<u> </u>	Do weens to brown chonul	368	8	30
177 143/846 1476864	6.6	deep to	7.5	>	_	>		E TO SOLOW	The lost		Tublisty too	hor	303	303	30t
177 439744 4767422	3	4.0	><	X	\times	>	>	1000 Fr.	*	7	lass Trades	5 4	305	306	307
177 43939 4767209	3,2	63	مي ا	9.0		>_	٤	902 fr.	9% or	7	100% Tenspre	Ŋ	\$ <i>0</i> \$	309	310
1766391 1766391	3,6	6.0	7:	0.3	Ø	>_	لہ	10% colum	(10) Rool	7	100% Tremp.	, U	311	Sig	313
175 439 417 1498417	5.3	bo-f	9 %	0.28	٤	>_	r	40% abb 50% Bed 10% ft.	302 SRAFE 14 102 P.R.F.	it m Rafe 3	the Joseph	Ma	314	315	918
17T 440023 4747330	~~	7	2.6	3,0	8	>	_	1990 209 74224	98% Pal 10% 91;3	-1	Walling Tenniby	γ̈́	£118	318	319
177 400439 4767304	7.4	90	7	6.9		×_	_	Sab Bash 445 colin	148 204 148 204	٦	100% Troopen	heroly Shuli	320	321	3