

Kerwood Wind, LP

Adelaide Wind Energy Centre – Project Modifications Report

Kerwood Wind, LP

Adelaide Wind Energy Centre – Project Modifications Report

Prepared by:	
AECOM	
105 Commerce Valley Drive West, Floor 7	905 886 7022
Markham, ON, Canada L3T 7W3	905 886 9494
www.aecom.com	

tel fax

Project Number: 60478107

Date: December, 2015

AECOM

page

Table of Contents

1.	1.2 Project Study Area	duction	1
		The Proponent	
	1.2	Project Study Area	1
2.	Prop	osed Project Modification	1
3.	Edits	s to the REA Reports	2
4.	Sum	mary and Conclusion	2

Appendices

Appendix A. Adelaide Wind Energy Centre – Substation Spare Transformer Noise Assessment Report

1. Introduction

The Adelaide Wind Energy Centre (Adelaide WEC or Project) is a currently operating wind project, located in southwestern Ontario, in the Township of Adelaide-Metcalfe, Middlesex County, Ontario. The Project operates under a Renewable Energy Approval (REA), number 8980-95RSLP, dated August 1, 2013. The Project and Approval include a transformer substation for the Project, located on Kerwood Road, and an additional transformer substation as part of the Parkhill Interconnect.

Modifications are sought to the REA to allow for use of a spare transformer, in the event of maintenance or failure of the approved transformer at the substation on Kerwood Road.

1.1 The Proponent

The Project will be owned and operated by Kerwood Wind, LP (Kerwood Wind), a wholly owned subsidiary of NextEra Energy Canada, LP (NextEra). NextEra's indirect parent company is NextEra Energy Resources, LLC. The primary contact for the Project is as follows:

Derek Dudek NextEra Energy Canada, LP 390 Bay Street, Suite 1720 Toronto, ON M5H 2Y2 Phone: 1-877-257-7330 Website: <u>www.nexteraenergycanada.com</u> Email: <u>Adelaide.Wind@NextEraEnergy.com</u>

1.2 Project Study Area

The Project is located in south-western Ontario, in the Township of Adelaide-Metcalfe, Middlesex County, Ontario. More specifically, the Project area is located south of Townsend Line, west of Center Road, north of Napperton Drive and east of Sexton Road. The Project area has not changed from the original REA submission.

The site plan from the original REA submission is provided in Appendix A of the appended Substation Spare Transformer Noise Assessment Report. The site plan has not changed since the original REA submission.

2. Proposed Project Modification

Kerwood Wind is proposing to use a spare transformer in the event of failure or maintenance of the approved transformer at the substation on Kerwood Road. The spare transformer will only be used in place of the approved transformer, not simultaneously. The currently approved transformer is an 85 megavolt amperes (MVA) transformer with a maximum sound power level of 102.8 A-weighted decibels (dB(A)). The spare transformer to be used is a 150 MVA transformer, identical to the central transformer used by the Jericho Wind Energy Centre, with a sound power level of 100.8 dB(A) when operating in an ONAN mode of operation. The spare transformer will operate continuously in ONAN cooling mode.

The spare transformer has three modes of operation, each with a different maximum power. The spare transformer when used at the Adelaide WEC will be run in the ONAN mode with a rating of 102 MVA. Under the ONAN mode of

operation, the spare transformer has a lower sound power level than the currently approved transformer. Therefore, use of the spare transformer instead of the currently approved transformer in the Adelaide WEC is predicted to operate in compliance with Ontario Ministry of the Environment and Climate Change (MOECC) noise level limits at all points of reception for 6 metres per second (m/s) to 10 m/s wind speeds.

3. Edits to the REA Reports

As a result of the proposed Project modification, an amendment to the REA Noise Impact Assessment (NIA) was prepared (Appendix A). The amendment assesses the compliance of the Project's substation spare transformer with respect to the applicable MOECC noise level limits. The results of the amended NIA indicate that the use of the spare transformer is predicted to operate in compliance with MOECC noise level limits at all points of reception for 6 m/s to 10 m/s wind speeds.

Edits are not required as a result of this proposed Project modification for the other REA reports that were submitted as part of the REA Application process.

4. Summary and Conclusion

The proposed Project modification described in this report is not anticipated to change the results of the REA reports (August, 2012).

Appendix A

Adelaide Wind Energy Centre – Substation Spare Transformer Noise Assessment Report

Kerwood Wind, LP

Adelaide Wind Energy Centre – Substation Spare Transformer Noise Assessment Report

Prepared by: AECOM 5080 Commerce Boulevard 905 238 0007 tel Mississauga, ON, Canada L4W 4P2 905 238 0038 fax www.aecom.com

Project Number: 60447266

Date: 22 December 2015

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to Consultant which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by Consultant represent Consultant's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since Consultant has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, Consultant, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by Consultant and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

Distribution List

# of Hard Copies	PDF Required	Association / Company Name

Revision Log

Revision #	Revised By	Date	Issue / Revision Description
0	Brian Bulnes	22 December 2015	Original document

AECOM Signatures

Brian Bulnes

Report Prepared By:

Brian Bulnes, EIT Acoustic Engineering Intern

Report Reviewed By:

Alex Dundon, P.Eng., INCE, MIEAust Manager, Acoustics and Air Quality Compliance

Executive Summary

AECOM Canada Ltd. was retained by Kerwood Wind, LP (Kerwood Wind) to prepare an amendment to the Renewable Energy Approval – Noise Impact Assessment (NIA) – Adelaide Wind Energy Centre, Ontario prepared by GL Garrad Hassan Canada, Inc. This amendment assesses the compliance of the substation spare transformer at the Adelaide Wind Energy Centre (Adelaide WEC or Project). The Project is an existing wind farm operating under Renewable Energy Approval number 8980-95RSLP, dated August 1, 2013. The Project is located in south-western Ontario, in the Township of Adelaide-Metcalfe, Middlesex County, Ontario.

The spare transformer will be used in the event of failure or maintenance of the previously approved transformer, not simultaneously.

This noise assessment evaluates noise emissions from the Project, under a scenario where the spare transformer is used instead of the previously approved transformer, with respect to the applicable Ontario Ministry of the Environment and Climate Change (MOECC) noise level limits.

The spare transformer has three modes of operation, each with a different maximum power. The spare transformer when used at the Adelaide WEC will be run in the ONAN mode with a rating of 102 MVA. Under the ONAN mode of operation, the spare transformer has a lower sound power level than the currently approved transformer. Therefore, use of the spare transformer instead of the currently approved transformer in the Adelaide Wind Energy Centre is predicted to operate in compliance with MOECC noise level limits at all points of reception for 6 m/s to 10 m/s wind speeds.

Table of Contents

Statement of Qualifications and Limitations Distribution List Executive Summary

			page
1.	Intro	oduction	2
2.	Proj	ect Site Description	3
3.	Poir	nts of Reception	4
4.	Nois	se Source Summary	5
	4.1 4.2	Wind turbine noise sources Substation noise source	
5.	Ass	essment Criteria	7
6.	Nois	se Impact Assessment	8
7.	Res	ults and Compliance	9
8.	Refe	erences	
9.	Sum	nmary Tables	

List of Tables

Table 1: Receptor classification descriptions	4
Table 2: Transformer and Associated Noise Barrier Coordinates (UTM17-NAD83)	6
Table 3: Noise Level Limits for Wind Turbines	7
Table 4: Adelaide Primary Transformer Acoustic Emission Summary	. 11
Table 5: Adelaide Spare Transformer Acoustic Emission Summary – ONAN cooled	. 11

Appendices

Appendix A: Extracted Site Plan (taken from Adelaide Wind Energy Centre REA Application) Appendix B: Approved Adelaide Noise Impact Assessment Report (April 2013) Appendix C: Spare Transformer Noise Emissions

1. Introduction

The Adelaide Wind Energy Centre (Adelaide WEC or Project) is a currently operating wind project, located in southwestern Ontario, in the Township of Adelaide-Metcalfe, Middlesex County, Ontario. The Project operates under a Renewable Energy Approval, number 8980-95RSLP, dated August 1, 2013 (REA). The Project and REA include a transformer substation for the Project, located on Kerwood Road, and an additional transformer substation as part of the Parkhill Interconnect.

Modifications are sought to the REA to allow for use of a spare transformer, in the event of maintenance or failure of the approved transformer at the substation on Kerwood Road. The currently approved transformer is an 85 MVA transformer with a maximum sound power level of 102.8 dB(A). The spare transformer to be used is a 150 MVA transformer, identical to the central transformer used by the Jericho Wind Energy Centre, with a sound power level of 100.8 dB(A) when operating in an ONAN mode of operation. The spare transformer will operate continuously in ONAN cooling mode.

As part of the REA Application, a Noise Impact Assessment (NIA) was prepared by GL Garrad Hassan Canada, Inc. This report assesses changes in noise impacts from the NIA, due to the proposed use of the substation spare transformer at the Project. Resultant noise levels have been assessed in accordance with the requirements of the Ontario Ministry of the Environment and Climate Change (MOECC) guideline *Noise Guidelines for Wind Farms – Interpretation for Applying MOE NPC Publications to Wind Power Generation Facilities* (October 2008).

The substation spare transformer at the Adelaide WEC is identical to the central transformer used in the Jericho Wind Energy Centre; this noise impact assessment has used the substation transformer specifications and information provided in the Jericho Wind Energy Centre – Revised Noise Assessment Report prepared in February 2014. Noise emission data for the transformer was obtained from the Transformer Test Reports, dated March 7, 2015.

2. Project Site Description

The Adelaide WEC is located in south-western Ontario, in the Township of Adelaide-Metcalfe, Middlesex County, Ontario. More specifically, the Project Area is located south of Townsend Line, west of Center Road, north of Napperton Drive and east of Sexton Road. The Project Area has not changed from the original REA submission.

Site plans from the original REA submission are provided in Appendix A.

3. Points of Reception

The points of reception (POR) used in the Noise Impact Assessment (NIA) were also used for this assessment. These points of reception were classified into four different categories, which are outlined in Table 1 below.

Table 1:	Receptor	classification	descriptions
----------	----------	----------------	--------------

Class	Class Description Quantity		Remarks	
NP	NP Non-participating		MOE Limits Apply	
PR	Participating	33	MOE Limits Do Not Apply	
VNP	Vacant Lot Non-participating	246	MOE Limits Apply	
VPR	Vacant Lot Participating	ing 15 MOE Limits Do No		

The height of each POR was estimated to be 1.5, 4.5, or 7.5 metres for one storey, two storey, or three storey buildings, respectively. Participating receptors are residences or vacant lots located on the same premises as Adelaide Wind Energy Centre project related infrastructure. A site layout is provided in Appendix A and coordinates are available in Section 9 summary tables.

The project area is best defined as a Class 3 area. The MOECC Publication NPC-300, *Environmental Noise Guideline for Stationary and transportation Sources – Approval and Planning,* defines Class 3 areas as "a rural area with an acoustical environment that is dominated by natural sounds having little or no road traffic, such as: a small community, agricultural area, a rural recreational area such as a cottage or a resort area or a wilderness area."

4. Noise Source Summary

4.1 Wind turbine noise sources

The wind turbine technology used for this Project is the GE 1.6-100 Wind Turbine with Low-Noise Trailing Edges (LNTE). This model has the following features:

- 100 metre rotor diameter, with a swept area of 7,854 m²
- Hub height of 80 metres
- Maximum generation capacity of 1.62 Megawatts

The REA for the Project approved 38 wind turbine generator locations, of which 37 have been constructed. This assessment includes noise emissions from all approved turbine locations, regardless of whether they have been constructed or not. No changes have been made, or are proposed, to the currently approved turbines.

As part of this assessment, existing and crystalized wind turbines (defined as those that have published Draft Site Plan Reports) within 5,000 metres of the transformer substation have also been considered. At the time of the Draft Site Plan Report for the Project, the only wind turbine to be considered was the Napier Wind Farm:

- Napier Wind Farm
 - o Consists of two 2.05 MW REPower MM92 wind turbines with a hub height of 100 metres

Noise levels for both Project turbines and those from the Napier Wind Farm were provided in the approved REA application. No changes are proposed to the approved noise levels for Project wind turbines.

At this time, the following additional projects are located within 5,000 metres of the transformer substation:

- Suncor Energy Adelaide Wind Power Project
 - Consists of 22 Siemens 2.3-113 wind turbine generators, derated to a capacity of 2.221 as outlined in the *Adelaide Wind Power Project Noise Assessment Report*

Manufacturer's noise data for the Siemens turbines for this project have been summarized in Section 9. The noise datasheets provided have been taken from the NIA for the Suncor Energy Adelaide Wind Power Project Noise Assessment Report, by HGC Engineering, dated July 2013.

4.2 Substation noise source

The currently approved transformer for the Project is a Prolec GE 51/68/85 MVA transformer. The proposed spare transformer for the Project is a Prolec GE 102/136/170 MVA transformer, which will be used in the event that the primary transformer requires servicing. The spare transformer has been confirmed to be capable of continuously operating at the 102 MVA ONAN mode for the Adelaide WEC, and will run at this setting when in use.

The test report for the spare transformer in ONAN cooling mode states that the sound pressure level measured in accordance with ANSI C57.12.90 shall not exceed 72 dB over the measurement surface (as defined in the ANSI/IEEE standard C57.12.90). An estimate of noise emissions expected from the spare transformer is provided in Table 5. Appendix C includes the spare transformer test report and a detailed calculation to support the transformer emission estimate. Note that a 5 dB penalty has been added to the transformer emission level in the noise prediction modelling as per the requirements of *Noise Guidelines for Wind Farms*.

The transformer will have a 5.5 metre high noise barrier on the south side of the transformer substation. The noise barrier is absorptive with an Absorptive Coefficient of 0.84. The noise barrier was constructed to a minimum surface density of 20 kg/m², and has no gaps or cracks. The co-ordinates of the transformer, as well as end-points and corners of the noise barrier are provided in Table 2.

Identifier	Equipment Make & Model	UTM Coordinates	Notes	
		Easting	Northing	
Spare	Prolec GE 102/136/170 MVA	439495.0	4765334.0	—
Transformer	Transformer			
Primary	Prolec GE 51/68/85 MVA	439495.0	4765334.0	—
Transformer	Transformer			
Noise Barrier		439494.0	4765325.5	West endpoint
Noise Barrier	—	439486.0	4765325.5	East endpoint

5. Assessment Criteria

Part V.0.1 of the Ontario Environmental Protection Act R.S.O. 1990 (EPA) addresses the approvals process required for renewable energy projects and Ontario Regulation 359/09 outlines the specific requirements for obtaining a Renewable Energy Approval (REA) from the MOECC.

As required by O. Reg. 359/09, noise from wind energy projects requiring approval within Ontario is assessed using the MOECC guideline *Noise Guidelines for Wind Farms – Interpretation for Applying MOE NPC Publications to Wind Power Generation Facilities* (PIBS 4709e, October 2008). This guideline, in conjunction with the regulation, sets the definitions, assessments and noise level limits for noise assessments of wind energy projects.

The MOECC noise level limits, at integer wind speeds, for points of reception in Class 3 areas are summarized in Table 3 below.

Table 3: Noise Level Limits for Wind Turbines

Point of Reception Classifications	1-hr L_{eq} Sound Level Limit (dB(A)) at 10m height Wind Speeds (m/s)							
	Less than or equal to 6 m/s	7 m/s	8 m/s	9 m/s	Greater than or equal to 10 m/s			
Class 1 & 2 Areas	45.0	45.0	45.0	49.0	51.0			
Class 3 Areas	40.0	43.0	45.0	49.0	51.0			

The subject area is best described as Class 3 rural, based on the definition provided in NPC-300. The most stringent noise level limit for a Class 3 Area, 40 dB(A) at a wind speed of 6 m/s, was the Performance Noise Level Limit applied at each Point of Reception.

6. Noise Impact Assessment

Kerwood Wind has confirmed that the spare transformer will run continuously at the ONAN rating of 102 MVA. Per transformer test results (provided in Appendix C), the guaranteed maximum sound pressure level emitted by the spare transformer will be 72 dB over the measurement surface (as defined in the ANSI/IEEE standard C57.12.90). A transformer sound power level calculation using the measurement surface area of the spare transformer is provided in Appendix C. The calculated sound power level of the spare transformer using ONAN cooling will be less than that of the currently approved transformer, and can be found in Section 9 summary tables.

7. Results and Compliance

The spare transformer is capable of running at the ONAN rating of 102 MVA continuously for the Adelaide WEC, and will only operate at this rating. In this mode, the spare transformer has a lower sound power level than the currently approved transformer. As the Adelaide wind farm is currently in compliance per the NIA and REA, the Project is predicted to continue to operate within MOECC noise level limits if the spare transformer is used.

8. References

- 1. Ontario Ministry of the Environment, Environmental Noise Guideline Publication NPC-300: Stationary and Transportation Sources Approval and Planning, August 2013.
- 2. International Organization for Standardization, ISO 9613-2: Acoustics Attenuation of Sound during Propagation Outdoors Part 2: General Method of Calculation, Geneva, Switzerland, 1996.
- 3. PIBS 4709e, Noise Guidelines for Wind Farms Interpretation for Applying MOE NPC Publications to Wind Power Generation Facilities, Ontario Ministry of the Environment, Queens Printer for Ontario, October 2008.
- 4. Adelaide Wind Energy Centre Renewable Energy Approval Application Noise Impact Assessment, GL Garrad Hassan, April 2013.
- 5. ANSI/IEEE C57.12.90, Standard Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers, Institute of Electrical and Electronics Engineers, Inc.
- 6. IEC 61400-11, Wind turbine generator systems Part 11: Acoustic noise measurement techniques, International Electrotechnical Commission, 2006.
- 7. Parkhill Interconnect Noise Impact Assessment, GL Garrad Hassan, September 2012

9. Summary Tables

Table 4: Adelaide Primary Transformer Acoustic Emission Summary

Octave Band Centre Frequency (Hz)	63	125	250	500	1000	2000	4000	8000	Overall
Transformer Sound Power (dB(A))	74.2	86.3	88.8	94.2	91.4	87.6	82.4	73.3	97.8
Tonal Penalty (dB)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Resultant Transformer Sound Power	79.2	91.3	93.8	99.2	96.4	92.6	87.4	78.3	102.8
(dB(A))									

Table 5: Adelaide Spare Transformer Acoustic Emission Summary – ONAN cooled rating

Octave Band Centre Frequency (Hz)	63	125	250	500	1000	2000	4000	8000	Overall
Transformer Sound Power (dB(A))	72.2	84.3	86.8	92.2	89.4	85.6	80.4	71.3	95.8
Tonal Penalty (dB)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Resultant Transformer Sound Power	77.2	89.3	91.8	97.2	94.4	90.6	85.4	76.3	100.8
(dB(A))									

Adelaide Wind Energy Centre – Substation Spare Transformer Noise Assessment

Appendices

Appendix A

Appendix A: Extracted Site Plan (taken from Adelaide Wind Energy Centre REA Application)

Other Components

- 1 Storey Receptor
- 2 Storey Receptor
- 3 Storey Receptor
- Vacant Lot Receptor
- ._ Existing 500 kV Line
- Existing Transmission Line

- ~ Local Road / Street

- Permanent Watercourse
- Intermittent Watercourse
- Transformer Station
- Park / Sports Field

- 🔺 Napier Turbine

 Strathroy Adelaide Wind Energy Centre

1009-003-120222--002-JM

April 24, 2012

Projection: UTM Zone 17, NAD83 Sources: Ontario Base Mapping, Ontario Road Network, Land Information Ontario, Geobase, CanVec.

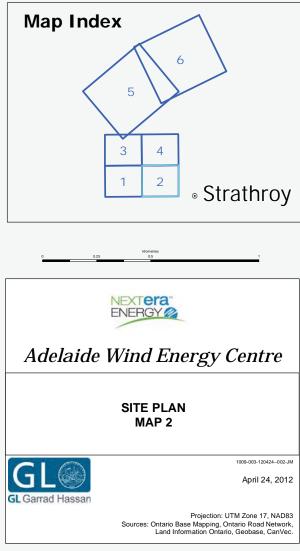
Legend

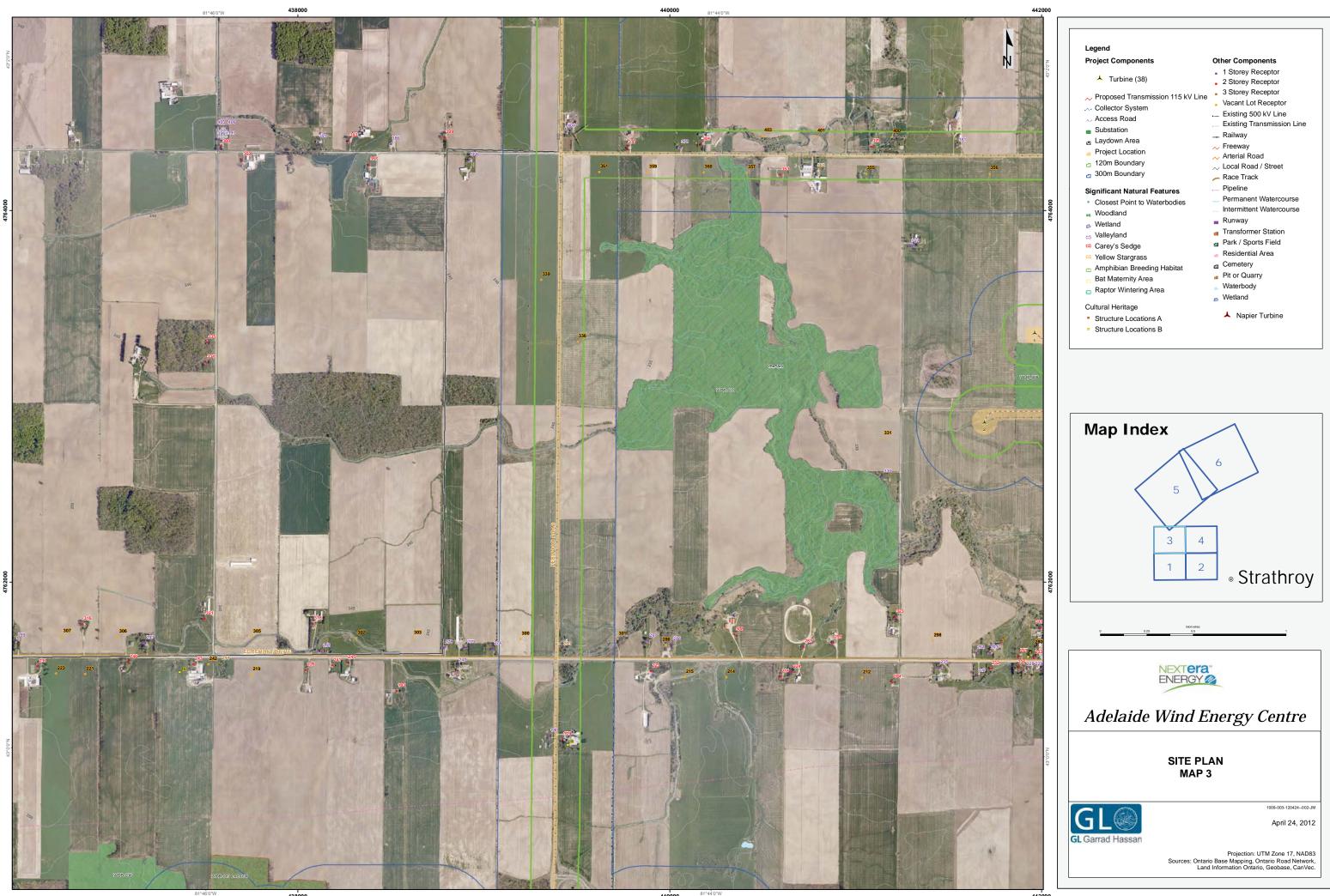
Project Components

👗 Turbine (38)

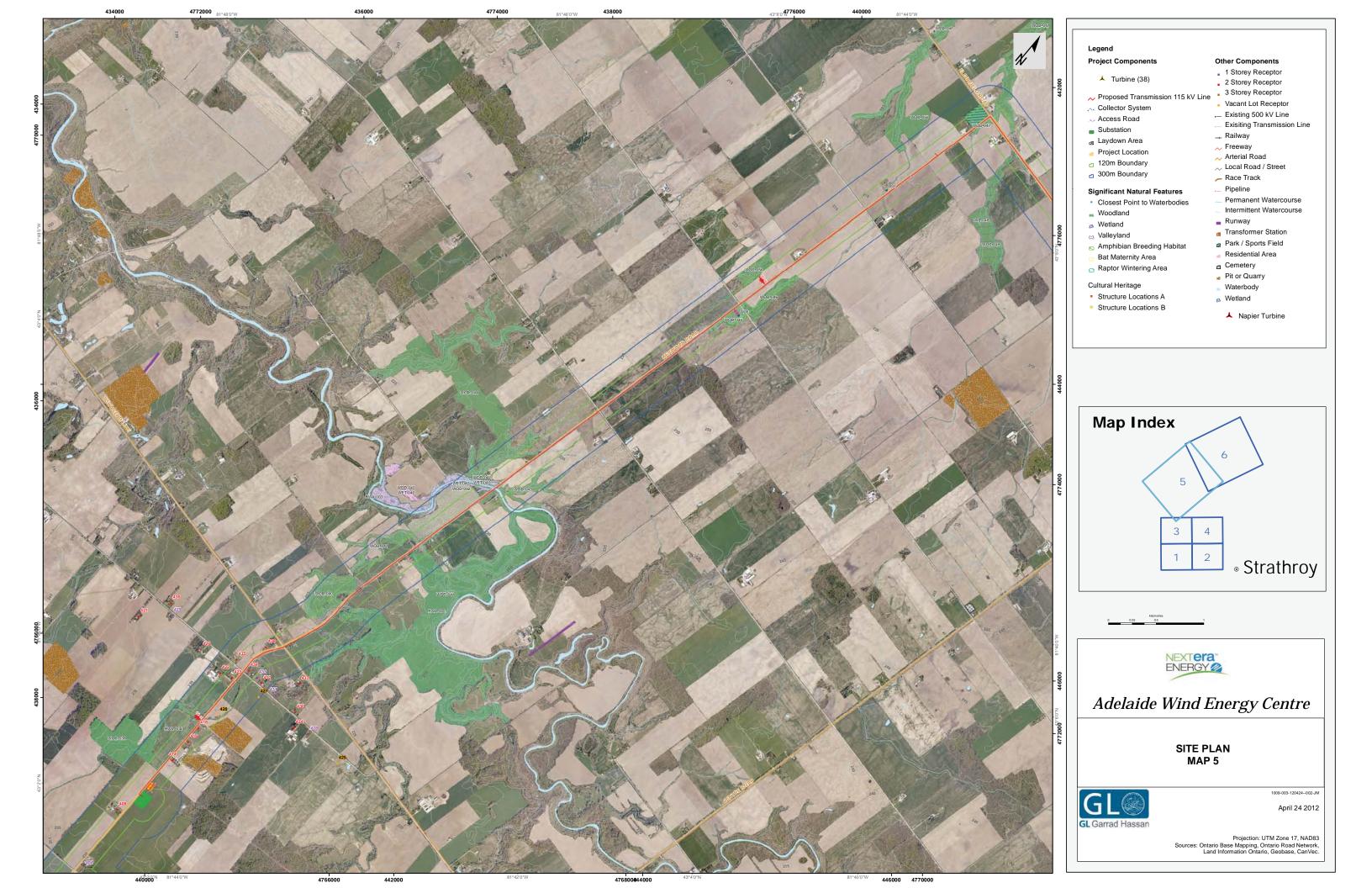
- ∧ Proposed Transmission 115 kV Line
- ... Collector System
- ~ Access Road
- Substation
- ය Laydown Area
- Project Location
- 🔁 120m Boundary
- a 300m Boundary

Significant Natural Features

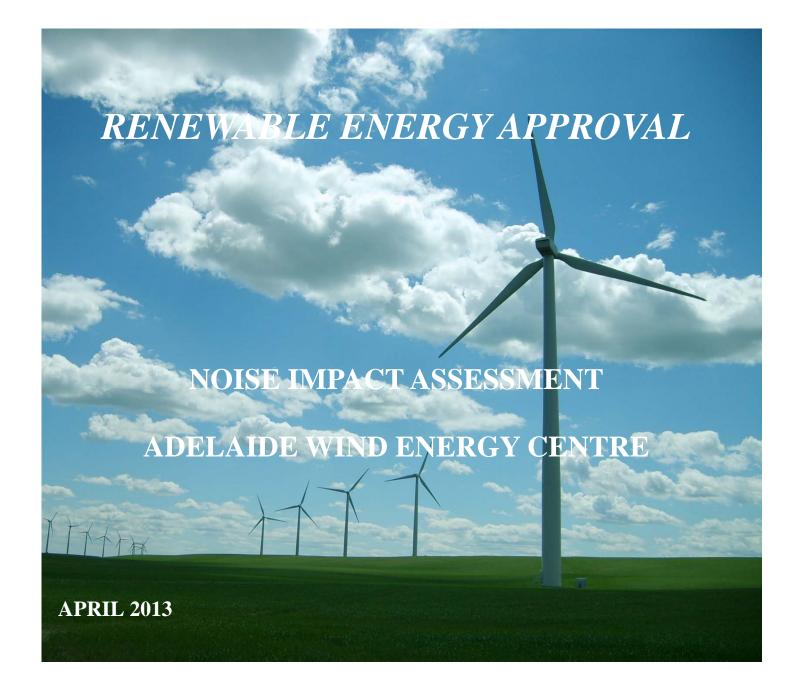

- Closest Point to Waterbodies
- 👞 Woodland
- s Wetland
- $_{\scriptscriptstyle {\rm C3}}$ Valleyland
- 🚳 Carey's Sedge
- Yellow Stargrass
- a Amphibian Breeding Habitat
- 🔁 Bat Maternity Area
- 👦 Raptor Wintering Area


Cultural Heritage

- Structure Locations A
- Structure Locations B


Other Components

- 1 Storey Receptor
- 2 Storey Receptor
- 3 Storey Receptor
- Vacant Lot Receptor
- ._ Existing 500 kV Line
- Existing Transmission Line
- 🗕 Railway
- 📈 Freeway
- Arterial Road
- $_{\sim}$ Local Road / Street
- 👝 Race Track
- Pipeline
- Permanent Watercourse
- Intermittent Watercourse
- Runway
- Transformer Station
- a Park / Sports Field
- Residential Area
- Cemetery
- a Pit or Quarry
- Waterbody
- 5 Wetland
- .
- 🔺 Napier Turbine



Appendix B

Appendix B: Approved Adelaide Noise Impact Assessment Report (April 2013)

GL Garrad Hassan

RENEWABLE ENERGY APPROVAL APPLICATION – NOISE IMPACT ASSESSMENT

ADELAIDE WIND ENERGY CENTRE, ONTARIO

NextEra Energy Canada, ULC
Ben Greenhouse
1009-CAMO-R-04
F
Final
Client's Discretion
25 April 2013

Author

A. Nercessian

Checked by

S. Dokouzian, A. Brunskill

Approved by

D. Eaton

GL Garrad Hassan Canada, Inc.

151 Slater Street, Suite 806, Ottawa, Ontario CANADA Phone: (613) 230-3787 | Fax: (613) 230-1742 www.gl-garradhassan.com

IMPORTANT NOTICE AND DISCLAIMER

1. Acceptance of this document by the Client is on the basis that GL Garrad Hassan Canada, Inc. (hereafter "GL GH"), a GL Group member operating under the GL Garrad Hassan brand, is not in any way to be held responsible for the application or use made of the findings and the results of the analysis herein and that such responsibility remains with the Client.

This Report shall be for the sole use of the Client for whom the Report is prepared. The document is subject to the terms of the Agreement between the Client and GL GH and should not be relied upon by third parties for any use whatsoever without the express written consent of GL GH. The Report may only be reproduced and circulated in accordance with the Document Classification and associated conditions stipulated in the Agreement, and may not be disclosed in any offering memorandum without the express written consent of GL GH.

GL GH does not provide legal, regulatory, insurance, tax or accounting advice. The Client must make its own arrangements for consulting in these areas.

This document has been produced from information as of the date hereof and, where applicable, from information relating to dates and periods referred to in this document. The Report is subject to change without notice and for any reason including, but not limited to, changes in information, conclusion and directions from the Client.

2. This Report has been produced from information relating to dates and periods referred to herein. Any information contained in this Report is subject to change.

KEY TO DOCUMENT CLASSIFICATION

Strictly Confidential	For disclosure only to named individuals within the Client's organization
Private and Confidential	For disclosure only to individuals directly concerned with the subject matter of the Report within the Client's organization
Commercial in Confidence	Not to be disclosed outside the Client's organization
GL GH only	Not to be disclosed to non-GL GH staff
Client's Discretion	Distribution for information only at the discretion of the Client (subject to the above Important Notice and Disclaimer)
Published	Available for information only to the general public (subject to the above Important Notice and Disclaimer)

© 2013 GL Garrad Hassan Canada, Inc.

REVISION HISTORY

Issue	Issue Date	Summary			
А	23 December 2011	Original Release (electronic version only)			
В	13 January 2012	New octave band spectrum for turbine			
С	14 August 2012	Updated receptor list and turbine sound levels			
D	12 October 2012	Responses to MOE comments			
E	10 April 2013	Responses to additional MOE comments; updated substation sound level and barrier, new sound power level spectrum for GE turbine, and ground factor justification.			
F	25 April 2013	Revised transformer source height.			

TABLE OF CONTENTS

1	INTRODUCTION				
2	GENERAL DESCRIPTION OF PROJECT SITE				
	2.1 General Characteristics				
	2.2	Land U	Jse Description	2	
	2.3	Points	of Reception	3	
3	DES	CRIPT	ION OF POINTS OF RECEPTION	4	
	3.1 Receptor Classes				
	3.2	Detern	nination of Applicable Noise Limits	4	
		3.2.1	Wind Turbine Installations in Class 3 Areas (Rural), Wind Speeds Below 6		
		3.2.2	m/s Class 3 Areas, Wind Speeds above 6 m/s	4 5	
	550				
4	DESCRIPTION OF SOURCES		6		
	4.1	Turbin	e Description	6	
5	WIN	D TUR	BINE NOISE EMISSION RATING	7	
	5.1	Noise	Emission Rating of the Adelaide Wind Farm Turbines	7	
	5.2	Noise	Emission Rating of the Adjacent Napier Wind Farm Turbines	8	
	5.3	Noise	Emission Rating of the Substation Transformer	9	
6	NOISE IMPACT ASSESSMENT		11		
	6.1 Justification of global ground factor G				
	Table	e 6-1: A	delaide Comparison of ground factor cases	13	
7	NOI	NOISE IMPACT ASSESSMENT SUMMARY TABLE		14	
	7.1	Result	S	14	
8	CON	ICLUSI	ON	27	
9	REFERENCES		28		
APF	PENDI	X A	ZONING AND NOISE ISO-CONTOUR MAPS	29	
APF	PENDI	ХВ	SAMPLE CALCULATION FOR NOISE MODELING	33	
APF	PENDI	X C	COORDINATES OF POINTS OF RECEPTION	36	
APF	PENDI	X D	COORDINATES OF PARTICIPANTS	40	
APF	PENDI	ХE	TURBINE AND TRANSFORMER TECHNICAL SPECIFICATIONS	42	
APF	PENDI	X F	COORDINATES OF TURBINES	47	

GL Garrad Hassan Canada, Inc.

GL@ GL Garrad Hassan

Final

LIST OF TABLES

Table 3-1: Summary of Noise Limits for Points of Reception (Class 3)	5
Table 4-1: Turbine Description – GE 1.6 - 100	6
Table 5-1: Adelaide Project – GE 1.6-100 Wind Turbine Acoustic Emission Summary	7
Table 5-2: Napier Project – REpower MM92 2.05MW Wind Turbine Acoustic Emission Summary	8
Table 5-3: Substation Barrier Coordinates	9
Table 5-5: Transformer Octave Band Calculation Details	10
Table 7-1: Wind Turbine Noise Impact Assessment Summary – Adelaide Wind Farm (Including Adjacent Wind Farm)	15
Table 7-2: Wind Turbine Noise Impact Assessment Summary – Adelaide Wind Farm – Participants	24
Table 7-3: Concordance table showing sound level contributions for Adelaide and Napier shared receptors	25

LIST OF FIGURES

Figure 2-1: Land features of the Adelaide wind farm site	2
Figure 6-1: Ground factor coverage near Adelaide substation	12

1 INTRODUCTION

GL Garrad Hassan Canada, Inc., a member of the GL Group and part of the GL Garrad Hassan brand (hereafter "GL GH") was retained by NextEra Energy Canada, ULC ("Client" or "NextEra") to prepare a Noise Impact Assessment (NIA) of the Adelaide Wind Energy Centre ("Project") in accordance with Ontario Regulation 359/09 (Renewable Energy Approvals (REA) under Part V.0.1 of the Ontario Environmental Protection Act (EPA)) [1] and Regulation 521/10. This NIA also follows the Ontario Ministry of the Environment (MOE) 2008 NPC Noise Interpretation Guidelines [2].

The proposed Adelaide Wind Energy Centre is located in south-western Ontario, in the Township of Adelaide-Metcalfe, Middlesex County, Ontario.

The Project will comprise 38 GE 1.6-100 (1.62 MW) turbines manufactured by General Electric (GE). The substation transformer location has been determined and it has been included in this assessment.

The objective of this assessment is twofold:

- Confirm the sound level limit requirements for the Project by providing an assessment of the existing baseline environmental noise conditions in the vicinity of the wind farm; and
- Predict the noise levels generated by the Project and adjacent projects at all Points of Reception, Participants and Vacant Lot Receptors within 1.5 km of the turbines.

2 GENERAL DESCRIPTION OF PROJECT SITE

2.1 General Characteristics

The proposed Adelaide Wind Energy Centre is located in southwestern Ontario, in the Township of Adelaide-Metcalfe, Middlesex County, Ontario. More specifically, the Project Area is located south of Townsend Line, west of Center Road, north of Napperton Drive and east of Sexton Road.

The Project has been configured using 38 GE 1.6-100 (1.62 MW), though only 37 turbines will be constructed. The wind turbines have been strategically sited on lands that the Client holds under lease option. The total Project Area is approximately 6,515 ha. Project components will be installed on privately-owned agricultural lots within this area. It is anticipated that the Project's collection system may be partially located on public rights-of-way.

Energy generated by the Project will be collected via underground cabling and overhead lines and directed to a substation. A project-owned 115 kV transmission line will then travel north; approximately 11.4 km to a proponent owned switchyard and from there will connect to a Hydro One 500 kV transmission line located approximately 11.5 km west of the project switchyard.

The landscape in the study area is predominantly characterized by agricultural fields and associated farms punctuated with numerous hedgerows, isolated woodlands, and the occasional watercourse. Photographs included in Figure 2-1 show typical views of the land and features of the study area.

Figure 2-1: Land features of the Adelaide wind farm site

2.2 Land Use Description

The site is located within two two-tiered municipal systems. The County of Middlesex makes up the upper tier of the region, while Adelaide Metcalfe, North Middlesex and Strathroy-Caradoc, along with five additional townships and municipalities, have lower tier municipal status. Agriculture is the predominant economic activity and land use throughout the County of Middlesex; however, the

GL Garrad Hassan Canada, Inc.

municipalities that comprise the study area each have features creating distinct community character. Surrounding properties and lands are characterized as low density residential while also including a number of agricultural buildings. Other land use within the study area includes rural and urban-rural, providing a foundation for manufacturing, business and tourism development. Access to the Adelaide Project is provided by small paved and unpaved municipal roads that stem from larger municipal roads. A zoning map key of Adelaide is shown in Appendix A.

2.3 **Points of Reception**

Receptor locations (i.e. Points of Reception) for the Project were identified using base data from recent aerial photos obtained from the Client, and field reconnaissance performed by GL GH to verify locations and building types. The height of each Point of Reception - taken to be 1.5 m, 4.5 m and 7.5 m for one-storey, two-storey and three-storey houses respectively - was also noted. All Points of Reception, as per the definition of the MOE, were considered in this NIA.

The MOE Noise Guidelines [2] generally define a Point of Reception (POR) as a house, campground, church, school or other sensitive building that is not located on the same premises as the wind farm, including its turbines and ancillary structures. Points of Reception can also include locations on vacant lots that have residences as a permitted use; in this case, GL GH and a third party consultant, IBI Group, identified Vacant Lot Receptors (VLR) on such lots in a location consistent with the building pattern in the area, as per the O. Reg. 359/09 and the Ontario MOE Noise Guidelines.

A residence located on the same premises as the wind turbine(s) or other Project infrastructure is not a Point of Reception as defined by the MOE noise guidelines, and considered a "Participating Receptor", and thus MOE noise limits do not apply.

The coordinates of each of the Points of Reception, Vacant Lot Receptors, and Participants are listed in Appendix C and Appendix D, respectively.

3 DESCRIPTION OF POINTS OF RECEPTION

There are 248 PoRs located within a radius of 1,500 m of a wind turbine or substation, among which 110 are VLRs and 138 are dwellings or other sensitive receptors such as churches, schools and cemeteries. There are 33 dwellings considered as Participants and 15 Vacant Lot Receptors considered as Participants.

3.1 Receptor Classes

The MOE categorizes Points of Reception into three classes: 1, 2, and 3. Class 1 refers to an acoustic environment typical of a major population centre where the background noise is dominated by the urban hum. These areas are highly urbanized and have moderate to high noise levels throughout the day and night. Class 2 areas have an acoustic environment characterized by low ambient sound levels between 19:00 and 07:00, whereby the evening and night time levels are defined by natural sounds, infrequent human activity and no clearly audible sounds from stationary sources (e.g. industrial and commercial facilities). Class 3 areas are typical of rural and/or small communities (i.e. with populations of less than 1000) and an acoustic environment that is dominated by natural sounds with little or no road traffic.

Within the study area the main sources of ambient sound that currently exist include:

- Vehicular traffic noise from Highway 402;
- Vehicular traffic on the local concession and side roads, some of which are gravel roads;
- Occasional sounds due to agricultural activities;
- Occasional sounds due to anthropogenic domestic activities; and
- Natural sounds.

Based on these conditions, <u>all Points of Reception are considered as having a Class 3 acoustic</u> environment.

3.2 Determination of Applicable Noise Limits

As stated in the MOE guidelines, the noise limits for a wind farm are set according to the existing MOE noise guidelines in NPC-205/NPC-232 while taking into account the wind-generated background noise.

For a Class 3 area, the sound level limits as defined by the MOE Interpretation are described in the sections below.

3.2.1 Wind Turbine Installations in Class 3 Areas (Rural), Wind Speeds Below 6 m/s

The lowest sound level limit expressed in terms of L_{eq} is: i) 40 dBA; or ii) the minimum hourly background sound level established in accordance with Publications NPC-232/NPC-233, whichever is higher.

3.2.2 Class 3 Areas, Wind Speeds above 6 m/s

The lowest sound level limit expressed in terms of L_{eq} is: i) the wind-induced background sound level, expressed in terms of ninetieth percentile sound level (L_{A90}) plus 7 dB; or ii) the minimum hourly background sound level established in accordance with Publications NPC-205/NPC-232/NPC-233, whichever is higher.

The applicable noise limits should be those defined by the MOE as summarized below in Table 3-1. A sample calculation of how noise modeling was determined for each Point of Reception appears in Appendix B where intermediate and cumulative A-weighted sound pressure levels from each turbine are provided.

	,	Wind	Speed	d [m/s	5]
Wind Turbine Noise Criterion NPC-232 [dBA]	6	7	8	9	10
	40	43	45	49	51

4 **DESCRIPTION OF SOURCES**

4.1 Turbine Description

The proposed GE 1.6-100 turbine is a 3-bladed, upwind, horizontal-axis turbine. The total rotor diameter of the turbine is 100 m, resulting in a swept area of 7,854 m^2 , and is designed to operate at between 9.75 and 16.18 revolutions per minute (rpm). The turbine rotor and nacelle are mounted on top of an 80 m tubular tower which is manufactured in sections from steel plate. Each turbine is mounted on a steel reinforced concrete foundation and equipped with a transformer, located outside the base of the tower.

Table 4-1 presents the general specifications of the wind turbine.

Model	GE 1.6 - 100
Design	Steel, tubular, white; 3 sections
Rated power	1.62 MW
Hub height	80 m
Rotor diameter	100 m
Rotor swept area	7854 m ²
Operational interval	9.75 – 16.18 rpm
Number of blades	3
Cut-in wind speed	3 m/s
Cut-out wind speed	25 m/s
Nominal wind speed	12 m/s

 Table 4-1: Turbine Description – GE 1.6 - 100
 Image: Comparison of the second seco

Full noise specifications as provided by the manufacturer can be found in Appendix E. Coordinates of all turbines are listed in Appendix F.

The Project consists of 38 wind turbines, though only 37 will be constructed. The collector system will connect to the substation, where the voltage will be elevated to 115 kV. The main power transformer has been included in this NIA.

5 WIND TURBINE NOISE EMISSION RATING

5.1 Noise Emission Rating of the Adelaide Wind Farm Turbines

Broadband sound power levels and octave band sound power levels of the GE 1.6-100 wind turbine were provided by the manufacturer and are shown in Appendix E. Measurements were made in accordance with the IEC 61400 - 11 Ed. 2.1[3] method using standardized wind speeds at 10 m height. The worst case octave band and broadband sound power levels of the turbine were retained for the purpose of the noise impact assessment to account for summer night-time shear. These values correspond to a 10 m height wind speed of 10 m/s or more. The proposed version of the GE 1.6-100 wind turbine uses Low Noise Trailing Edge (LNTE) serrated blade technology, which results in a lower broadband sound level than the previous version.

The GE 1.6-100 wind turbine has an expected value for tonal audibility of $\Delta La, k < 2$ dB, irrespective of wind speed, hub height, and grid frequency based on the IEC 61400-11 standard. A letter confirming the current sound power levels and stating the tonality of the turbine is attached in Appendix E.

The octave band sound power levels used for the simulation in this NIA are those stated for each octave band centre frequency in Table 5-1, and are presented in dB linear, as requested by the MOE. The total broadband level is presented in dBA.

Make and Model : GE 1.6-100												
Electrical Ratin	ng : 1.6 N	1W										
Hub Height (m): 80 m											
Wind Shear Co	efficient	: 0.35, ty	pical sun	nmer nigh	nt time sh	ear of the	region					
	Octave Band Sound Power Level [dB]											
	Manufacturer's Emission Levels Adjusted Emission Levels											
Wind Speed [m/s]	6	7	8	9	10	6	7	8	9	10		
Frequency [Hz]												
31.5	109.5	112.9	113.1	113.0	112.9	112.9	112.9	112.9	112.9	112.9		
63	106.5	110.2	110.3	110.3	110.2	110.2	110.2	110.2	110.2	110.2		
125	104.5	107.7	107.9	107.9	107.8	107.8	107.8	107.8	107.8	107.8		
250	103.3	104.0	103.9	104.0	104.1	104.1	104.1	104.1	104.1	104.1		
500	98.7	100.3	99.8	99.9	100.2	100.2	100.2	100.2	100.2	100.2		
1000	91.8	97.1	97.5	97.6	97.8	97.8	97.8	97.8	97.8	97.8		
2000	91.2	94.5	94.5	94.3	93.9	93.9	93.9	93.9	93.9	93.9		
4000	87.9	88.7	88.1	87.4	86.9	86.9	86.9	86.9	86.9	86.9		
8000	71.4	71.5	71.7	70.5	70.2	70.2	70.2	70.2	70.2	70.2		
Broadband (dBA)	100.5	103.0	103.0	103.0	103.0	103.0	103.0	103.0	103.0	103.0		

Table 5-1: Adelaide Project – GE 1.6-100 Wind Turbine Acoustic Emission Summary

GL Garrad Hassan Canada, Inc.

7

5.2 Noise Emission Rating of the Adjacent Napier Wind Farm Turbines

The Napier Wind Farm, which is under development, is within 5 km of the proposed Adelaide wind farm. The proposed Napier Wind Farm consists of two REPower MM92 2.05 MW turbines at a hub height of 100 m.

GL GH has obtained octave band sound power levels corresponding to 10 m height wind speeds of 6, 7, 8, 9, and 10 m/s from the Napier Wind Farm Noise Impact Assessment [4]. The worst case octave band and broadband sound power levels of the turbine were retained for the purpose of the noise impact assessment.

GL GH has determined that the octave band sound power levels corresponding to a 10 m wind speed of 7 m/s result in the worst case sound pressure levels. GL GH has reported the greatest estimated sound pressure level for each receptor.

The octave band sound power levels used for the simulation in this NIA are those stated for each octave band centre frequency in Table 5-2.

Make and Mod	el : REp	ower										
Electrical Rating : 2.05 MW												
Hub Height (m) : 100 m												
Wind Shear Co	efficient	t:0.35,1	typical s	ummer n	ight tim	e shear o	f the reg	ion				
			Oc	ctave Ba	nd Sound	d Power	Level [d	B]				
	Mar	Manufacturer's Emission Levels Adjusted Emission Levels										
Wind Speed [m/s]	6	7	8	9	10	6	7	8	9	10		
Frequency [Hz]												
63	109.0	110.5	111.0	110.8	111.8	110.5	110.5	110.5	110.5	110.5		
125	107.7	108.4	108.3	107.9	106.6	108.4	108.4	108.4	108.4	108.4		
250	106.0	106.5	105.7	105.3	103.4	106.5	106.5	106.5	106.5	106.5		
500	102.1	102.9	102.6	102.3	101.5	102.9	102.9	102.9	102.9	102.9		
1000	97.1	98.1	98.7	99.0	99.3	98.1	98.1	98.1	98.1	98.1		
2000	90.4	91.3	92.2	92.8	95.3	91.3	91.3	91.3	91.3	91.3		
4000	82.8	83.8	85.1	86.2	91.7	83.8	83.8	83.8	83.8	83.8		
8000	74.2	75.7	78.5	79.5	82.3	75.7	75.7	75.7	75.7	75.7		
Broadband (dBA)	103.4	104.2	104.2	104.2	104.2	104.2	104.2	104.2	104.2	104.2		

Table 5-2: Napier Project – RE	power MM92 2.05MW Wind Turbine A	Acoustic Emission Summarv
Tuble e 21 Tuplet 110 jeee 102		icoustic Limssion Summary

5.3 Noise Emission Rating of the Substation Transformer

The cumulative effect that the substation would have on nearby residents has been considered in this analysis.

Noise emission from the substation mainly originates from one (1) high-voltage 51/68/85 MVA, 121/34.5 kV, Wye/ Delta step-up transformer. The equipment proposed for the substation will be compliant with applicable standards (CAN/CSA-C88-M90, IEEE C57.12.90).

The Broadband Sound Power Level for the noise modelling calculations was calculated to be 102.8 dBA, based on an audible noise level of 75 dBA guaranteed by the transformer manufacturer (shown in Appendix E), in accordance with the application of standard IEEE C57.12.90, for utility scale transformers. The 102.8 dBA includes a 5 dBA tonal penalty, as prescribed in Publication NPC-104.

The substation transformer drawings that were used to calculate the transformer's measurement surface area as defined in standard IEEE C57.12.90 are included in Appendix E. The calculated measurement surface area S was found to be 190.6 m². This calculation is based on an 8 sided polygon perimeter that includes a 2 m offset from both fan cooled surfaces and a 0.3 m offset from the other surfaces, as well as the top area of the transformer, in accordance with standard IEEE C57.12.90.

It excludes the reservoir above the main transformer tank since that height is not considered when determining the height of the IEEE C57.12.90 microphone placement, and therefore not part of the measurement surface area. The substation coordinates, as provided by the Client, are included in Appendix F.

A sound barrier has been proposed to attenuate the noise from the substation transformer. The type of barrier used in this noise study is one that can be described as of absorptive type with an Absorptive Coefficient of 0.84. The acoustic barrier should have a density of at least 20 kg/m² and have a closed surface free of gaps and cracks, such as Armtec's Durisol. A 5.5 meter tall one-sided barrier was placed south of the transformer and is illustrated on the noise iso-contour maps in Appendix A. The coordinates of the substation barrier are shown in Table 5-3.

ID	Easting ¹ [m]	Northing ¹ [m]
B1a	439494.0	4765325.5
B1b	439486.0	4765325.5

1. UTM Zone 17, NAD83

Table 5-4 provides the octave band sound power levels of the substation transformer, using a typical transformer octave band sound distribution for a large transformer from the Handbook of Acoustics [5]. Table 5-5 details the octave band calculation.

GL GH has considered modeling the transformer as a set of area sources. In this case, modeling as an area source yields a less conservative sound pressure level at the nearest PoR, compared to modeling the

transformer as a point source at top height. Therefore, the transformer was conservatively modeled as a point source located at the top height of 4.5 m, at the request of the MOE.

Table 5-4: Adelaide Project – Substation Transformer Sound Power Level

Transformer		Octave Band Sound Power Level* (dBA)									
Frequency (Hz)	31.5	63	125	250	500	1000	2000	4000	8000	Broadband	
PWL (dBA)	60.0	79.2	91.3	93.8	99.2	96.4	92.6	87.4	78.3	102.8	

*Includes 5 dBA penalty to account for tonality

	8000	4000	2000	1000	500	250	125	63	31.5
Typical Outdoor Transformer Octave band relative distribution [5] [dB Lin]	-21	-14	-9	-4	2	2	7	5	-1
dB Lin to dBA Conversion Scale	-1.1	1.0	1.2	0.0	-3.2	-8.6	-16.1	-26.2	-39.4
Typical Outdoor Transformer Octave band relative distribution [dBA]	-22.1	-13	-7.8	-4	-1.2	-6.6	-9.1	-21.2	-40.4
Scaled to 102.8 dBA Transformer	78.3	87.4	92.6	96.4	99.2	93.8	91.3	79.2	60.0

Table 5-5: Transformer Octave Band Calculation Details

6 NOISE IMPACT ASSESSMENT

The sound pressure levels at each Point of Reception, Participant and VLR for the aggregate of all wind turbines and substations associated with the Adelaide Project and adjacent projects were calculated based on the ISO 9613-2 method.

The ISO 9613 standard [6], [7] provides a prediction of the equivalent continuous A-weighted sound pressure level at a distance from one or more point sources under meteorological conditions favourable to propagation from sources of sound emission. These conditions are for downwind propagation or, equivalently, propagation under a well-developed moderate ground-based temperature inversion, commonly occurring at night.

The method consists of octave-band algorithms (i.e., with nominal mid-band frequencies from 63 Hz to 8 kHz) for calculating the attenuation of the emitted sound. The algorithm takes into account the following physical effects:

- Geometrical divergence attenuation due to spherical spreading from the sound source;
- Atmospheric absorption attenuation due to absorption by the atmosphere; and
- Ground effect attenuation due to the acoustical properties of the ground.

ISO-9613-2 parameters were set as follows:

- Ambient air temperature: 10°C;
- Ambient barometric pressure: 101.32 kPa;
- Humidity: 70%;
- Source ground factor: 0.7;
- Middle ground factor: 0.7; and
- Receptor ground factor: 0.7.
- The effect of topography was considered

Justification for the use of a global ground factor of 0.7 is presented in Section 6.1.

Additional potential attenuation from foliage was not taken into account in this NIA, implying that the values calculated for sound attenuation are likely to be conservative in areas where there is foliage present in the line of sight between any turbine and a Point of Reception. The estimated accuracy of the ISO 9613 method, as stated in ISO 9613-2, is ± 3 dB.

The wind turbine noise emission ratings used for each octave band were those specified in Table 5-1 and Table 5-2. The noise impact was calculated for each Point of Reception and Participant located within 1,500 m of one or more turbines or substation, and the calculated noise level was then compared with the applicable noise limit for each Point of Reception as stated in Table 3-1.

Noise levels were calculated at 4.5 m and 7.5 m agl for 2-storey and 3-storey Points of Reception/Participants respectively, and at 1.5 m agl at 16 points along a 30 m radius circle for each 1-storey Point of Reception/Participant. For the latter, the highest of these 16 values was chosen and presented in the table of noise levels.

6.1 Justification of global ground factor G

GL GH has undertaken a refined estimate of the noise propagation around the project substation based on recent comments from the MOE, since this part of the site will have the largest area of hard ground, as well as the shortest source-receiver distance. This section presents a detailed ground factor calculation for the area expected to be most sensitive to ground factor assumptions. For the transformer-to-R408 case, ground factors for the source, middle, and receiver regions have been calculated based on ISO 9613-2. The distance from the transformer to VLR408 is 289 m. Figure 6-1 shows the regions and ground cover, including the gravel area around the substation.

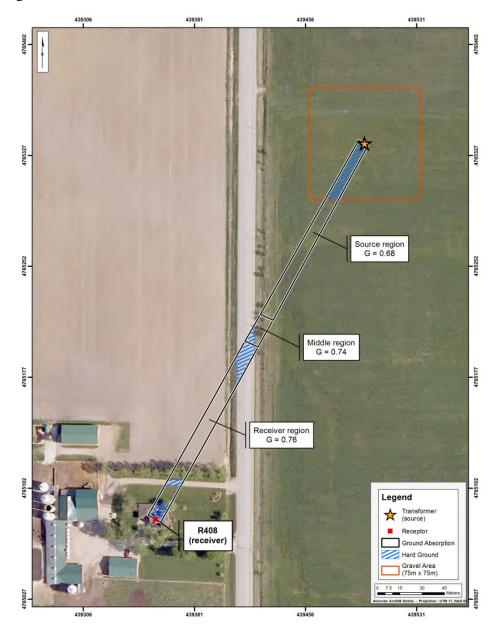


Figure 6-1: Ground factor coverage near Adelaide substation

As defined by ISO 9613-2, the source region extends over a distance of $30h_s$ from the source towards the receiver, where h_s is the source height of 4.5 m. The source region length is therefore 135 m. NextEra has supplied site plans indicating that an area of approximately 5660 m² will be covered with gravel. A geometric analysis has indicated that 43 m of the source region is covered with gravel. Based on aerial photography, the remaining 92 m is covered with grass. The source region ground factor G_s is then 0.68 (92 m / 135 m), as per ISO 9613-2.

Receiver region ground factor G_R

As defined by ISO 9613-2, the receiver region extends over a distance of $30h_R$ from the receiver towards the source, where h_R is the receiver height of 4.5 m. The receiver region length is 135 m. Based on aerial photography, 32 m of the receiver region is covered by road and other hard ground. The remaining 103 m is covered by soft ground. The receiver region ground factor G_R is then 0.76 (103 m / 135 m), as per ISO 9613-2.

Middle region ground factor G_M

As defined by ISO 9613-2, the middle region stretches over the distance between the source and receiver regions. The middle region length is 19 m. Based on aerial photography, 5 m of the receiver region is covered by road and other hard ground. The remaining 14 m is covered by soft ground. The middle region ground factor G_M is then 0.74 (14 m / 19 m), as per ISO 9613-2.

CadnaA Calculations

Two sets of CadnaA calculations have been carried out. The first uses the following three ground factors calculated as described above:

 $G_S = 0.68$ $G_M = 0.74$ $G_R = 0.76$

The second CadnaA calculation uses a global ground factor of 0.7 for all three regions. The estimated sound pressure level at R408 is shown below for each case.

Case	Case 1, Global G = 0.7	Case 2, Specific G values for each region
Sound Pressure Level at R408 [dBA]	38.2	38.2

 Table 6-1: Adelaide Comparison of ground factor cases

As seen in Table 6-1, both cases produce a sound pressure level of 38.2 dBA at R408. Because a global value of 0.7 has been shown to be appropriate for the most sensitive source-receiver case in the vicinity of the transformer, GL GH considers this to be further support that this value can be considered appropriate for use across the rest of the Adelaide site, based on ISO 9613-2. Therefore the opinion of GL GH is that based on ISO 9613-2, a global ground factor of 0.7 is suitable for use when modeling noise propagation at the Adelaide site.

7 NOISE IMPACT ASSESSMENT SUMMARY TABLE

7.1 Results

The noise level at each critical Point of Reception within 1,500 m of any turbine or substation of the Adelaide Project, for wind speeds between 6 m/s and 10 m/s, is tabulated in Table 7-1. For each Point of Reception, the following information is provided:

- The distance to the closest wind turbine;
- For Points of Reception at 1.5 m agl, the sound pressure level presented for wind speeds from 6 m/s to 10 m/s is the maximum noise level on the circumference of a 30 m radius circle centered on the Point of Reception;
- For Points of Reception at 4.5 m or 7.5 m agl, the sound pressure level presented for wind speeds from 6 m/s to 10 m/s is the noise level at the Point of Reception location at its respective height;
- The sound level limit for that Point of Reception according to the MOE noise guidelines at each wind speed from 6 m/s to 10 m/s;
- The applicable background sound level; and
- Whether or not the noise levels at the Point of Reception comply with the MOE guidelines (for continued reference, compliance is confirmed for all Points of Reception).

The closest distance between a wind turbine and a Point of Reception for this project is 555 m found between Turbine 2 and VLR_331.

The closest distance between a Point of Reception and the substation transformer is 289 m, found between Point of Reception R_408 and the transformer.

The highest calculated noise levels were found at VLR_73 and R_119 with sound pressure levels of 39.2 dBA and 38.9 dBA, respectively.

The results show that the Adelaide Project complies with the applicable MOE noise guidelines at all wind speeds modelled (i.e., 6, 7, 8, 9 and 10 m/s). Noise iso-contour maps illustrating the maximum cumulative noise contribution of all noise sources are shown in Appendix A.

The maximum noise level calculated at each Participant within 1,500 m of any turbine or substation of the Adelaide Project is tabulated in Table 7-2.

A concordance table showing all shared PoRs between the Adelaide and Napier wind farms is shown in Table 7-3.

Point of	Receptor	Distance to Nearest	Nearest			Pressure cted Wind			Sound Le	evel Limit	[dBA] at S in m/s	elected Wi	ind Speed	Applicable Background Sound Level	Compliance With
Reception ID	Height [m]	Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
R 17	4.5	1497	36	36.5	36.5	36.5	36.5	36.5	40	43	45	49	51	40	Yes
R_21	4.5	1491	36	36.1	36.1	36.1	36.1	36.1	40	43	45	49	51	40	Yes
	4.5	1476	36	36.9	36.9	36.9	36.9	36.9	40	43	45	49	51	40	Yes
 R 36	4.5	1452	35	38.1	38.1	38.1	38.1	38.1	40	43	45	49	51	40	Yes
 R 38	1.5	1397	36	36.9	36.9	36.9	36.9	36.9	40	43	45	49	51	40	Yes
 R_42	4.5	1434	33	38.2	38.2	38.2	38.2	38.2	40	43	45	49	51	40	Yes
 R_45	7.5	1497	37	33.5	33.5	33.5	33.5	33.5	40	43	45	49	51	40	Yes
R_50	7.5	1399	37	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes
V_51	4.5	1338	36	38.9	38.9	38.9	38.9	38.9	40	43	45	49	51	40	Yes
V_52	4.5	1329	36	38.3	38.3	38.3	38.3	38.3	40	43	45	49	51	40	Yes
V_55	4.5	1388	35	38.1	38.1	38.1	38.1	38.1	40	43	45	49	51	40	Yes
R_56	4.5	1342	36	37.3	37.3	37.3	37.3	37.3	40	43	45	49	51	40	Yes
V_57	4.5	1321	33	38.3	38.3	38.3	38.3	38.3	40	43	45	49	51	40	Yes
V_58	4.5	1310	33	38.0	38.0	38.0	38.0	38.0	40	43	45	49	51	40	Yes
V_59	4.5	1356	33	38.7	38.7	38.7	38.7	38.7	40	43	45	49	51	40	Yes
R_60	4.5	1333	33	37.7	37.7	37.7	37.7	37.7	40	43	45	49	51	40	Yes
R_62	4.5	1497	33	37.6	37.6	37.6	37.6	37.6	40	43	45	49	51	40	Yes
R_64	4.5	1288	33	37.9	37.9	37.9	37.9	37.9	40	43	45	49	51	40	Yes
V_65	4.5	1458	30	31.7	31.7	31.7	31.7	31.7	40	43	45	49	51	40	Yes
R_69	4.5	1492	30	32.6	32.6	32.6	32.6	32.6	40	43	45	49	51	40	Yes
R_72	4.5	1500	30	33.3	33.3	33.3	33.3	33.3	40	43	45	49	51	40	Yes
V_73	4.5	1363	35	39.2	39.2	39.2	39.2	39.2	40	43	45	49	51	40	Yes
R_74	4.5	1392	37	32.3	32.3	32.3	32.3	32.3	40	43	45	49	51	40	Yes
V_75	4.5	996	37	34.5	34.5	34.5	34.5	34.5	40	43	45	49	51	40	Yes
R_76	1.5	1089	32	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
V_77	4.5	889	37	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
V_78	4.5	1366	38	29.9	29.9	29.9	29.9	29.9	40	43	45	49	51	40	Yes
R_80	1.5	959	32	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
R_81	4.5	894	32	37.6	37.6	37.6	37.6	37.6	40	43	45	49	51	40	Yes

Table 7-1: Wind Turbine Noise Impact Assessment Summary – Adelaide Wind Farm (Including Adjacent Wind Farm)

GL Garrad Hassan Canada, Inc.

15

Document No .:
1009-CAMO-R-04

Point of	Receptor	Distance to	Nearest			l Pressure ected Wind			Sound Lo	evel Limit	[dBA] at S in m/s	elected Wi	ind Speed	Applicable Background Sound Level	Courseling of With
Reception ID	Height [m]	Nearest Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Compliance With Limit (Yes/No)
R_82	1.5	1000	37	32.7	32.7	32.7	32.7	32.7	40	43	45	49	51	40	Yes
R_83	4.5	756	38	34.2	34.2	34.2	34.2	34.2	40	43	45	49	51	40	Yes
V 84	4.5	871	37	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes
R_86	4.5	834	32	37.9	37.9	37.9	37.9	37.9	40	43	45	49	51	40	Yes
V_87	4.5	1011	37	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
R_96	1.5	1174	13	33.7	33.7	33.7	33.7	33.7	40	43	45	49	51	40	Yes
V_97	4.5	1116	29	34.8	34.8	34.8	34.8	34.8	40	43	45	49	51	40	Yes
V_98	4.5	861	26	36.4	36.4	36.4	36.4	36.4	40	43	45	49	51	40	Yes
V_99	4.5	980	38	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
R_100	1.5	1028	29	32.4	32.4	32.4	32.4	32.4	40	43	45	49	51	40	Yes
V_101	4.5	1233	25	34.8	34.8	34.8	34.8	34.8	40	43	45	49	51	40	Yes
R_102	1.5	1028	29	32.5	32.5	32.5	32.5	32.5	40	43	45	49	51	40	Yes
V_103	4.5	1191	21	37.9	37.9	37.9	37.9	37.9	40	43	45	49	51	40	Yes
V_104	4.5	1207	29	31.6	31.6	31.6	31.6	31.6	40	43	45	49	51	40	Yes
R_106	1.5	1396	13	30.5	30.5	30.5	30.5	30.5	40	43	45	49	51	40	Yes
R_107	1.5	995	26	33.9	33.9	33.9	33.9	33.9	40	43	45	49	51	40	Yes
R_108	4.5	987	31	37.7	37.7	37.7	37.7	37.7	40	43	45	49	51	40	Yes
R_109	4.5	1180	21	37.8	37.8	37.8	37.8	37.8	40	43	45	49	51	40	Yes
V_110	4.5	652	38	37.0	37.0	37.0	37.0	37.0	40	43	45	49	51	40	Yes
R_111	4.5	698	38	36.6	36.6	36.6	36.6	36.6	40	43	45	49	51	40	Yes
V_112	4.5	1215	13	34.2	34.2	34.2	34.2	34.2	40	43	45	49	51	40	Yes
V_113	4.5	1130	13	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes
R_114	4.5	1014	29	33.6	33.6	33.6	33.6	33.6	40	43	45	49	51	40	Yes
V_118	4.5	1109	34	37.6	37.6	37.6	37.6	37.6	40	43	45	49	51	40	Yes
R_119	1.5	695	32	38.9	38.9	38.9	38.9	38.9	40	43	45	49	51	40	Yes
R_126	4.5	857	25	37.3	37.3	37.3	37.3	37.3	40	43	45	49	51	40	Yes
R_127	1.5	1120	24	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes
R_128	1.5	1127	21	35.9	35.9	35.9	35.9	35.9	40	43	45	49	51	40	Yes
R_129	4.5	864	25	36.6	36.6	36.6	36.6	36.6	40	43	45	49	51	40	Yes
R_131	1.5	950	29	32.3	32.3	32.3	32.3	32.3	40	43	45	49	51	40	Yes
R_135	4.5	986	24	37.5	37.5	37.5	37.5	37.5	40	43	45	49	51	40	Yes

16

Final

Issue: F

Document No .:
1009-CAMO-R-04

Point of	Receptor	Distance to Nearest	Nearest			l Pressure ected Wind			Sound Le	evel Limit	[dBA] at S in m/s	elected Wi	nd Speed	Applicable Background Sound Level	Compliance With
Reception ID	Height [m]	Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
R 137	1.5	796	38	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes
R 138	1.5	1064	24	35.4	35.4	35.4	35.4	35.4	40	43	45	49	51	40	Yes
R 139	4.5	1048	25	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
R 140	4.5	1022	24	37.5	37.5	37.5	37.5	37.5	40	43	45	49	51	40	Yes
R 143	1.5	1038	21	36.2	36.2	36.2	36.2	36.2	40	43	45	49	51	40	Yes
R 145	4.5	973	29	36.2	36.2	36.2	36.2	36.2	40	43	45	49	51	40	Yes
R 146	7.5	1084	23	38.0	38.0	38.0	38.0	38.0	40	43	45	49	51	40	Yes
V_149	4.5	1046	21	38.1	38.1	38.1	38.1	38.1	40	43	45	49	51	40	Yes
R_150	1.5	834	24	35.6	35.6	35.6	35.6	35.6	40	43	45	49	51	40	Yes
R_152	4.5	980	13	36.3	36.3	36.3	36.3	36.3	40	43	45	49	51	40	Yes
R_153	1.5	1201	13	31.6	31.6	31.6	31.6	31.6	40	43	45	49	51	40	Yes
R_154	1.5	839	20	37.4	37.4	37.4	37.4	37.4	40	43	45	49	51	40	Yes
V_158	4.5	762	38	36.9	36.9	36.9	36.9	36.9	40	43	45	49	51	40	Yes
V_159	4.5	915	38	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes
V_160	4.5	1099	38	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
V_162	4.5	924	23	38.1	38.1	38.1	38.1	38.1	40	43	45	49	51	40	Yes
R_163	4.5	1248	13	33.0	33.0	33.0	33.0	33.0	40	43	45	49	51	40	Yes
R_164	7.5	1048	13	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
V_165	4.5	1414	13	31.7	31.7	31.7	31.7	31.7	40	43	45	49	51	40	Yes
R_168	4.5	1061	29	32.5	32.5	32.5	32.5	32.5	40	43	45	49	51	40	Yes
V_170	4.5	723	29	35.6	35.6	35.6	35.6	35.6	40	43	45	49	51	40	Yes
V_172	4.5	756	25	36.2	36.2	36.2	36.2	36.2	40	43	45	49	51	40	Yes
V_174	4.5	624	29	37.1	37.1	37.1	37.1	37.1	40	43	45	49	51	40	Yes
V_176	4.5	663	27	37.6	37.6	37.6	37.6	37.6	40	43	45	49	51	40	Yes
V_177	4.5	763	27	36.8	36.8	36.8	36.8	36.8	40	43	45	49	51	40	Yes
R_179	4.5	1296	21	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
R_180	1.5	1338	21	33.2	33.2	33.2	33.2	33.2	40	43	45	49	51	40	Yes
R_181	4.5	1468	9	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
R_183	4.5	1463	16	33.9	33.9	33.9	33.9	33.9	40	43	45	49	51	40	Yes
V_186	4.5	1453	12	31.3	31.3	31.3	31.3	31.3	40	43	45	49	51	40	Yes
V_187	4.5	1225	12	32.8	32.8	32.8	32.8	32.8	40	43	45	49	51	40	Yes

17

Issue: F

Final

Document No .:
1009-CAMO-R-04

Point of	Receptor	Distance to	Nearest				Level at R Speed in 1		Sound Le	evel Limit	[dBA] at S in m/s	elected Wi	nd Speed	Applicable Background Sound Level	Compliance With
Reception ID	Height [m]	Nearest Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
R 188	1.5	1411	5	31.9	31.9	31.9	31.9	31.9	40	43	45	49	51	40	Yes
 V_189	4.5	930	12	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
V_191	4.5	1038	12	34.2	34.2	34.2	34.2	34.2	40	43	45	49	51	40	Yes
V_193	4.5	874	12	36.2	36.2	36.2	36.2	36.2	40	43	45	49	51	40	Yes
V_195	4.5	1097	12	36.2	36.2	36.2	36.2	36.2	40	43	45	49	51	40	Yes
V_196	4.5	1299	9	35.4	35.4	35.4	35.4	35.4	40	43	45	49	51	40	Yes
V_197	4.5	1238	9	35.7	35.7	35.7	35.7	35.7	40	43	45	49	51	40	Yes
R_198	4.5	1428	5	33.5	33.5	33.5	33.5	33.5	40	43	45	49	51	40	Yes
R_199	4.5	871	12	35.8	35.8	35.8	35.8	35.8	40	43	45	49	51	40	Yes
V_201	4.5	1416	5	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
R_202	4.5	1402	8	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
R_203	4.5	1394	8	35.0	35.0	35.0	35.0	35.0	40	43	45	49	51	40	Yes
V_207	4.5	1402	3	34.0	34.0	34.0	34.0	34.0	40	43	45	49	51	40	Yes
V_208	4.5	1433	4	33.7	33.7	33.7	33.7	33.7	40	43	45	49	51	40	Yes
R_209	1.5	1195	9	34.0	34.0	34.0	34.0	34.0	40	43	45	49	51	40	Yes
R_210	1.5	1369	5	31.7	31.7	31.7	31.7	31.7	40	43	45	49	51	40	Yes
R_211	4.5	1185	9	36.1	36.1	36.1	36.1	36.1	40	43	45	49	51	40	Yes
R_213	4.5	1447	4	33.6	33.6	33.6	33.6	33.6	40	43	45	49	51	40	Yes
R_217	1.5	1376	2	32.0	32.0	32.0	32.0	32.0	40	43	45	49	51	40	Yes
R_218	4.5	908	12	36.6	36.6	36.6	36.6	36.6	40	43	45	49	51	40	Yes
R_222	1.5	1392	4	31.8	31.8	31.8	31.8	31.8	40	43	45	49	51	40	Yes
R_227	4.5	1335	3	34.2	34.2	34.2	34.2	34.2	40	43	45	49	51	40	Yes
R_228	1.5	1346	3	32.2	32.2	32.2	32.2	32.2	40	43	45	49	51	40	Yes
R_229	1.5	1334	3	32.2	32.2	32.2	32.2	32.2	40	43	45	49	51	40	Yes
V_230	4.5	1327	3	34.2	34.2	34.2	34.2	34.2	40	43	45	49	51	40	Yes
V_231	4.5	1326	3	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes
R_232	4.5	1332	2	34.2	34.2	34.2	34.2	34.2	40	43	45	49	51	40	Yes
R_233	1.5	1329	3	32.1	32.1	32.1	32.1	32.1	40	43	45	49	51	40	Yes
V_234	4.5	1356	3	34.1	34.1	34.1	34.1	34.1	40	43	45	49	51	40	Yes
R_235	1.5	1362	2	31.9	31.9	31.9	31.9	31.9	40	43	45	49	51	40	Yes
R_236	4.5	1333	2	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes

18

Final

Issue: F

Document No .:
1009-CAMO-R-04

Point of	Receptor	Distance to	Nearest			l Pressure ected Wind			Sound Le	evel Limit	[dBA] at S in m/s	elected Wi	ind Speed	Applicable Background Sound Level	Compliance With
Reception ID	Height [m]	Nearest Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Compliance With Limit (Yes/No)
R_238	4.5	1324	3	34.2	34.2	34.2	34.2	34.2	40	43	45	49	51	40	Yes
R_239	4.5	1311	3	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes
R 248	1.5	1010	12	32.3	32.3	32.3	32.3	32.3	40	43	45	49	51	40	Yes
R_249	4.5	1087	12	33.6	33.6	33.6	33.6	33.6	40	43	45	49	51	40	Yes
R_250	4.5	1148	12	33.1	33.1	33.1	33.1	33.1	40	43	45	49	51	40	Yes
V_251	4.5	1268	3	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
R_253	4.5	1276	3	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
R_255	1.5	1261	3	32.4	32.4	32.4	32.4	32.4	40	43	45	49	51	40	Yes
R_256	1.5	1271	3	32.4	32.4	32.4	32.4	32.4	40	43	45	49	51	40	Yes
R_257	4.5	1269	2	34.5	34.5	34.5	34.5	34.5	40	43	45	49	51	40	Yes
R_258	1.5	1257	3	32.4	32.4	32.4	32.4	32.4	40	43	45	49	51	40	Yes
R_259	4.5	1248	3	34.5	34.5	34.5	34.5	34.5	40	43	45	49	51	40	Yes
R_260	1.5	1133	9	34.1	34.1	34.1	34.1	34.1	40	43	45	49	51	40	Yes
R_261	1.5	1270	3	32.4	32.4	32.4	32.4	32.4	40	43	45	49	51	40	Yes
V_262	4.5	1262	3	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
R_264	1.5	1251	2	32.3	32.3	32.3	32.3	32.3	40	43	45	49	51	40	Yes
R_265	1.5	1242	3	32.5	32.5	32.5	32.5	32.5	40	43	45	49	51	40	Yes
R_267	4.5	953	12	34.6	34.6	34.6	34.6	34.6	40	43	45	49	51	40	Yes
R_270	4.5	1241	5	34.8	34.8	34.8	34.8	34.8	40	43	45	49	51	40	Yes
V_272	4.5	1348	12	31.8	31.8	31.8	31.8	31.8	40	43	45	49	51	40	Yes
V_275	4.5	1218	3	34.6	34.6	34.6	34.6	34.6	40	43	45	49	51	40	Yes
V_276	4.5	702	12	37.1	37.1	37.1	37.1	37.1	40	43	45	49	51	40	Yes
V_280	4.5	1219	3	34.6	34.6	34.6	34.6	34.6	40	43	45	49	51	40	Yes
V_281	4.5	1251	4	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
V_282	4.5	1251	4	34.5	34.5	34.5	34.5	34.5	40	43	45	49	51	40	Yes
V_284	4.5	1231	8	35.4	35.4	35.4	35.4	35.4	40	43	45	49	51	40	Yes
V_285	4.5	1198	3	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes
V_287	4.5	1249	5	33.8	33.8	33.8	33.8	33.8	40	43	45	49	51	40	Yes
R_289	1.5	1223	3	32.5	32.5	32.5	32.5	32.5	40	43	45	49	51	40	Yes
R_290	4.5	1206	3	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes
V_291	4.5	1377	5	33.6	33.6	33.6	33.6	33.6	40	43	45	49	51	40	Yes

19

Final

Issue: F

Document No .:
1009-CAMO-R-04

Point of	Receptor	Distance to Nearest	Nearest			l Pressure ected Wind			Sound Le	evel Limit	[dBA] at S in m/s	elected Wi	nd Speed	Applicable Background Sound Level	Compliance With
Reception ID	Height [m]	Turbine [m]	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
V 292	4.5	1434	4	33.6	33.6	33.6	33.6	33.6	40	43	45	49	51	40	Yes
R_295	4.5	1478	2	33.4	33.4	33.4	33.4	33.4	40	43	45	49	51	40	Yes
V 296	4.5	1184	3	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes
R_304	4.5	1187	3	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes
R_309	1.5	1141	3	33.0	33.0	33.0	33.0	33.0	40	43	45	49	51	40	Yes
R_310	4.5	1156	3	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
R 311	4.5	1112	3	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
V_312	4.5	1092	3	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes
V_313	4.5	1096	3	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
R_314	4.5	1096	3	35.2	35.2	35.2	35.2	35.2	40	43	45	49	51	40	Yes
R_315	1.5	1124	3	33.1	33.1	33.1	33.1	33.1	40	43	45	49	51	40	Yes
R_317	1.5	1106	3	33.2	33.2	33.2	33.2	33.2	40	43	45	49	51	40	Yes
R_319	4.5	1064	8	36.4	36.4	36.4	36.4	36.4	40	43	45	49	51	40	Yes
R_320	4.5	1065	3	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
R_322	4.5	1068	3	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
R_323	4.5	1186	2	34.1	34.1	34.1	34.1	34.1	40	43	45	49	51	40	Yes
R_324	1.5	1046	3	33.6	33.6	33.6	33.6	33.6	40	43	45	49	51	40	Yes
R_325	1.5	1057	3	33.5	33.5	33.5	33.5	33.5	40	43	45	49	51	40	Yes
R_326	1.5	999	3	33.9	33.9	33.9	33.9	33.9	40	43	45	49	51	40	Yes
V_327	4.5	1064	4	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
V_328	4.5	897	3	36.5	36.5	36.5	36.5	36.5	40	43	45	49	51	40	Yes
V_329	4.5	670	4	37.5	37.5	37.5	37.5	37.5	40	43	45	49	51	40	Yes
R_330	1.5	678	2	35.3	35.3	35.3	35.3	35.3	40	43	45	49	51	40	Yes
V_331	4.5	555	2	38.5	38.5	38.5	38.5	38.5	40	43	45	49	51	40	Yes
R_332	1.5	631	4	36.2	36.2	36.2	36.2	36.2	40	43	45	49	51	40	Yes
R_337	1.5	800	4	34.6	34.6	34.6	34.6	34.6	40	43	45	49	51	40	Yes
R_338	4.5	883	11	36.8	36.8	36.8	36.8	36.8	40	43	45	49	51	40	Yes
R_340	1.5	945	4	33.6	33.6	33.6	33.6	33.6	40	43	45	49	51	40	Yes
V_341	4.5	1116	4	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
R_342	1.5	814	1	33.8	33.8	33.8	33.8	33.8	40	43	45	49	51	40	Yes
R_345	4.5	762	6	36.6	36.6	36.6	36.6	36.6	40	43	45	49	51	40	Yes

20

Issue: F

Final

Document No .:
1009-CAMO-R-04

Point of	Receptor	Nearest	Nearest			l Pressure ected Wind			Sound Le	evel Limit	[dBA] at S in m/s	elected Wi	nd Speed	Applicable Background Sound Level	Compliance With	
Reception ID	Height [m]		Turbine	In Turbine	Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)
R 347	4.5	699	6	37.0	37.0	37.0	37.0	37.0	40	43	45	49	51	40	Yes	
R 348	4.5	981	6	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes	
V 349	4.5	1008	6	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes	
V 350	4.5	1329	5	33.1	33.1	33.1	33.1	33.1	40	43	45	49	51	40	Yes	
V 351	4.5	1362	5	32.6	32.6	32.6	32.6	32.6	40	43	45	49	51	40	Yes	
 V_355	4.5	1246	1	32.1	32.1	32.1	32.1	32.1	40	43	45	49	51	40	Yes	
V 356	4.5	887	1	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes	
V_357	4.5	1457	sub	30.6	30.6	30.6	30.6	30.6	40	43	45	49	51	40	Yes	
R_358	4.5	938	6	35.1	35.1	35.1	35.1	35.1	40	43	45	49	51	40	Yes	
V_359	4.5	1193	sub	30.6	30.6	30.6	30.6	30.6	40	43	45	49	51	40	Yes	
V_360	4.5	1321	sub	30.5	30.5	30.5	30.5	30.5	40	43	45	49	51	40	Yes	
V_361	4.5	1133	sub	30.7	30.7	30.7	30.7	30.7	40	43	45	49	51	40	Yes	
R_362	7.5	1460	1	31.6	31.6	31.6	31.6	31.6	40	43	45	49	51	40	Yes	
R_363	7.5	1302	6	34.0	34.0	34.0	34.0	34.0	40	43	45	49	51	40	Yes	
R_364	4.5	993	1	33.9	33.9	33.9	33.9	33.9	40	43	45	49	51	40	Yes	
R_365	1.5	1351	1	30.6	30.6	30.6	30.6	30.6	40	43	45	49	51	40	Yes	
R_368	1.5	1209	sub	25.8	25.8	25.8	25.8	25.8	40	43	45	49	51	40	Yes	
R_371	4.5	1114	6	34.0	34.0	34.0	34.0	34.0	40	43	45	49	51	40	Yes	
R_372	4.5	972	6	34.5	34.5	34.5	34.5	34.5	40	43	45	49	51	40	Yes	
R_373	7.5	1447	6	33.3	33.3	33.3	33.3	33.3	40	43	45	49	51	40	Yes	
R_374	4.5	1456	1	32.1	32.1	32.1	32.1	32.1	40	43	45	49	51	40	Yes	
R_375	1.5	866	6	33.4	33.4	33.4	33.4	33.4	40	43	45	49	51	40	Yes	
R_377	4.5	1034	sub	31.3	31.3	31.3	31.3	31.3	40	43	45	49	51	40	Yes	
R_378	1.5	1142	sub	28.7	28.7	28.7	28.7	28.7	40	43	45	49	51	40	Yes	
R_379	4.5	1330	1	31.5	31.5	31.5	31.5	31.5	40	43	45	49	51	40	Yes	
V_382	4.5	1346	6	32.3	32.3	32.3	32.3	32.3	40	43	45	49	51	40	Yes	
R_384	4.5	1187	sub	30.7	30.7	30.7	30.7	30.7	40	43	45	49	51	40	Yes	
V_385	4.5	1168	6	33.3	33.3	33.3	33.3	33.3	40	43	45	49	51	40	Yes	
R_386	1.5	1393	sub	25.6	25.6	25.6	25.6	25.6	40	43	45	49	51	40	Yes	
V_387	4.5	927	6	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes	
V_388	4.5	935	6	34.7	34.7	34.7	34.7	34.7	40	43	45	49	51	40	Yes	

21

Final

Issue: F

Document No .:
1009-CAMO-R-04

	Receptor	Distance to Nearest Turbine [m]	Nearest			l Pressure ected Wind			Sound Le	evel Limit	[dBA] at S in m/s	elected Wi	nd Speed	Applicable Background Sound Level	Compliance With
Reception ID	Height [m]		Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)
V_389	4.5	1245	6	33.3	33.3	33.3	33.3	33.3	40	43	45	49	51	40	Yes
V_390	4.5	1011	6	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes
R 399	4.5	1176	sub	27.0	27.0	27.0	27.0	27.0	40	43	45	49	51	40	Yes
V_400	4.5	1302	1	31.5	31.5	31.5	31.5	31.5	40	43	45	49	51	40	Yes
R_402	4.5	1114	6	33.7	33.7	33.7	33.7	33.7	40	43	45	49	51	40	Yes
V_403	4.5	1372	sub	30.4	30.4	30.4	30.4	30.4	40	43	45	49	51	40	Yes
R_408	4.5	289	sub	38.2	38.2	38.2	38.2	38.2	40	43	45	49	51	40	Yes
R_414	4.5	521	sub	36.9	36.9	36.9	36.9	36.9	40	43	45	49	51	40	Yes
R_416	4.5	773	sub	33.0	33.0	33.0	33.0	33.0	40	43	45	49	51	40	Yes
R_418	4.5	950	sub	31.0	31.0	31.0	31.0	31.0	40	43	45	49	51	40	Yes
V_420	4.5	1184	sub	28.7	28.7	28.7	28.7	28.7	40	43	45	49	51	40	Yes
V_439	4.5	634	38	35.7	35.7	35.7	35.7	35.7	40	43	45	49	51	40	Yes
V_440	4.5	891	25	36.0	36.0	36.0	36.0	36.0	40	43	45	49	51	40	Yes
V_441	4.5	915	4	35.6	35.6	35.6	35.6	35.6	40	43	45	49	51	40	Yes
V_445	4.5	971	3	35.9	35.9	35.9	35.9	35.9	40	43	45	49	51	40	Yes
V_451	4.5	791	25	37.0	37.0	37.0	37.0	37.0	40	43	45	49	51	40	Yes
V_458	4.5	1321	3	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes
V_459	4.5	1114	sub	27.8	27.8	27.8	27.8	27.8	40	43	45	49	51	40	Yes
V_460	4.5	1328	1	32.7	32.7	32.7	32.7	32.7	40	43	45	49	51	40	Yes
V_462	4.5	1319	3	34.2	34.2	34.2	34.2	34.2	40	43	45	49	51	40	Yes
V_464	4.5	717	2	36.7	36.7	36.7	36.7	36.7	40	43	45	49	51	40	Yes
V_465	4.5	890	2	35.5	35.5	35.5	35.5	35.5	40	43	45	49	51	40	Yes
V_466	4.5	988	2	34.9	34.9	34.9	34.9	34.9	40	43	45	49	51	40	Yes
V_467	4.5	1096	2	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes
V_468	4.5	1181	2	34.2	34.2	34.2	34.2	34.2	40	43	45	49	51	40	Yes
V_469	4.5	1228	2	34.1	34.1	34.1	34.1	34.1	40	43	45	49	51	40	Yes
V_470	4.5	1287	2	33.9	33.9	33.9	33.9	33.9	40	43	45	49	51	40	Yes
V_471	4.5	1334	2	33.9	33.9	33.9	33.9	33.9	40	43	45	49	51	40	Yes
V_472	4.5	1287	2	34.1	34.1	34.1	34.1	34.1	40	43	45	49	51	40	Yes
V_473	4.5	1253	2	34.3	34.3	34.3	34.3	34.3	40	43	45	49	51	40	Yes
V_474	4.5	1241	2	34.4	34.4	34.4	34.4	34.4	40	43	45	49	51	40	Yes

22

Issue: F

Final

	Document No.: Renewable Energy Approval Application – Noise Impact Assessment – Adelaide Wind Energy 1009-CAMO-R-04 Centre, Ontario Centre, Ontario								nergy	Issue: F	Final				
Point of	Receptor	Distance to	Nearest		nted Sound 3A] at Sele				Sound Level Limit [dBA] at Selected Wind Speed in m/s					Applicable Background Sound Level	Compliance With
Reception ID	Height Nearest Turbine		Turbine [ID]	6 or <	7	8	9	10	6 or <	7	8	9	10	NPC 232 (C 3)	Limit (Yes/No)

35.9

38.6

40

40

43

43

45

45

51

51

49

49

40

40

Yes

Yes

V_475

V_476

4.5

4.5

972

673

3

2

35.9

38.6

35.9

38.6

35.9

38.6

35.9

38.6

Participant ID	Height [m]	Distance to Nearest Turbine [m]	Nearest Turbine [ID]	Calculated Sound Pressure Level at Dwelling [dBA]			
PR_89	4.5	602	34	40.6			
PR_90	7.5	609	34	40.3			
PR_92	4.5	819	32	38.5			
PR 93	4.5	744	31	38.4			
PR 94	7.5	977	34	38.4			
PR 122	4.5	691	38	37.9			
PR 123	7.5	572	31	42.1			
PR 124	4.5	881	24	37.6			
PR 125	1.5	813	24	35.7			
PR 133	1.5	925	29	33.7			
PR 134	4.5	906	26	36.5			
PR 136	4.5	757	24	37.9			
PR 141	4.5	603	26	38.4			
PR 142	4.5	1047	21	38.1			
PR 144	1.5	1041	22	36.0			
PR 156	4.5	650	20	40.4			
PR 157	4.5	521	19	42.0			
PR 161	1.5	686	19	38.0			
PR 166	4.5	517	26	39.1			
PR 167	4.5	533	20	42.4			
PR 169	1.5	791	20	37.9			
PR 173	4.5	515	23	39.8			
PR 200	4.5	1430	8	34.7			
PR 254	4.5	780	12	37.3			
PR 263	1.5	1248	2	32.3			
PR 266	4.5	1064	9	36.5			
PR 333	4.5	562	4	38.6			
PR 343	4.5	666	1	36.8			
PR 354	1.5	792	6	34.3			
PR 366	4.5	1086	1	33.5			
PR 376	7.5	1189	1	33.3			
PR 381	1.5	1085	1	30.8			
PR 404	1.5	909	sub	30.1			
PV 442	4.5	1016	1	33.5			
PV_443	4.5	990	1	33.5			
PV 444	4.5	1027	1	33.2			
PV 446	4.5	944	13	38.0			
PV 447	4.5	487	19	42.0			
PV 448	4.5	596	19	41.3			
PV 449	4.5	533	23	39.7			
PV 450	4.5	710	23	38.1			
PV 452	4.5	731	24	37.2			
PV 453	4.5	947	20	35.7			
PV 454	4.5	1184	9	35.8			
PV 455	4.5	720	12	37.3			
PV_433 PV_456	4.5	1252	5	34.1			
	4.5	591	4	38.2			
PV 457							

Table 7-2: Wind Turbine Noise Impact Assessment Summary – Adelaide Wind Farm – Participants

GL Garrad Hassan Canada, Inc.

Issue: F

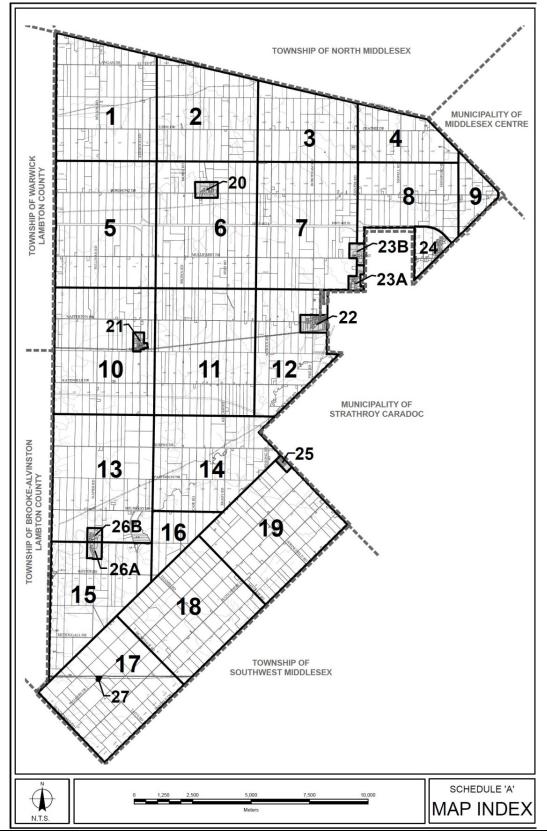
UTM co	ordinates	Noise rec	ceptor ID	Distance sourc	to nearest ce [m]	Nearest s	ource ID	Level of far	m [dBA]	Level [dBA]
Easting [m]	Northing [m]	Adelaide	Napier	Adelaide	Napier	Adelaide	Napier	Adelaide	Napier	Total
441,720	4,756,075	17	R021	1497	750	36	N2	31.6	34.8	36.5
441,842	4,756,093	21	R022	1491	788	36	N2	31.6	34.2	36.1
441,670	4,756,094	23	R127	1476	714	36	N2	31.8	35.2	36.9
441,197	4,756,181	36	R018	1452	635	35	N2	32.7	36.7	38.1
441,366	4,756,200	38	R020	1398	574	36	N2	30.8	35.6	36.9
440,002	4,756,224	42	R003	1433	597	33	N1	31.8	37.0	38.2
442,598	4,756,229	45	R027	1498	1281	37	N2	31.2	29.7	33.5
442,215	4,756,239	50	R025	1399	941	37	N2	32.2	32.8	35.5
441,566	4,756,234	51	R105	1388	550	36	N2	32.8	37.7	38.9
441,714	4,756,243	52	N/A	1329	595	36	N2	32.7	36.9	38.3
440,988	4,756,249	55	R102	1388	688	35	N2	33.1	36.5	38.1
441,882	4,756,250	56	R023	1341	683	36	N2	32.5	35.6	37.3
440,337	4,756,256	57	R101	1321	620	33	N1	32.6	37.0	38.3
440,482	4,756,256	58	N/A	1310	694	33	N1	32.8	36.4	38.0
440,150	4,756,258	59	N/A	1355	564	33	N1	32.3	37.6	38.7
440,765	4,756,258	60	R001	1333	844	33	N2	33.0	35.9	37.7
439,769	4,756,263	62	R004	1497	632	33	N1	31.7	36.4	37.6
440,605	4,756,282	64	R002	1288	754	33	N1	33.1	36.2	37.9
438,195	4,756,284	65	N/A	1458	1953	30	N1	30.7	24.7	31.7
438,603	4,756,336	69	R083	1492	1548	30	N1	31.1	27.3	32.6
438,767	4,756,399	72	N/A	1499	1373	30	N1	31.5	28.5	33.3

Table 7-3: Concordance table showing sound level contributions for Adelaide and Napier shared receptors

GL Garrad Hassan Canada, Inc.

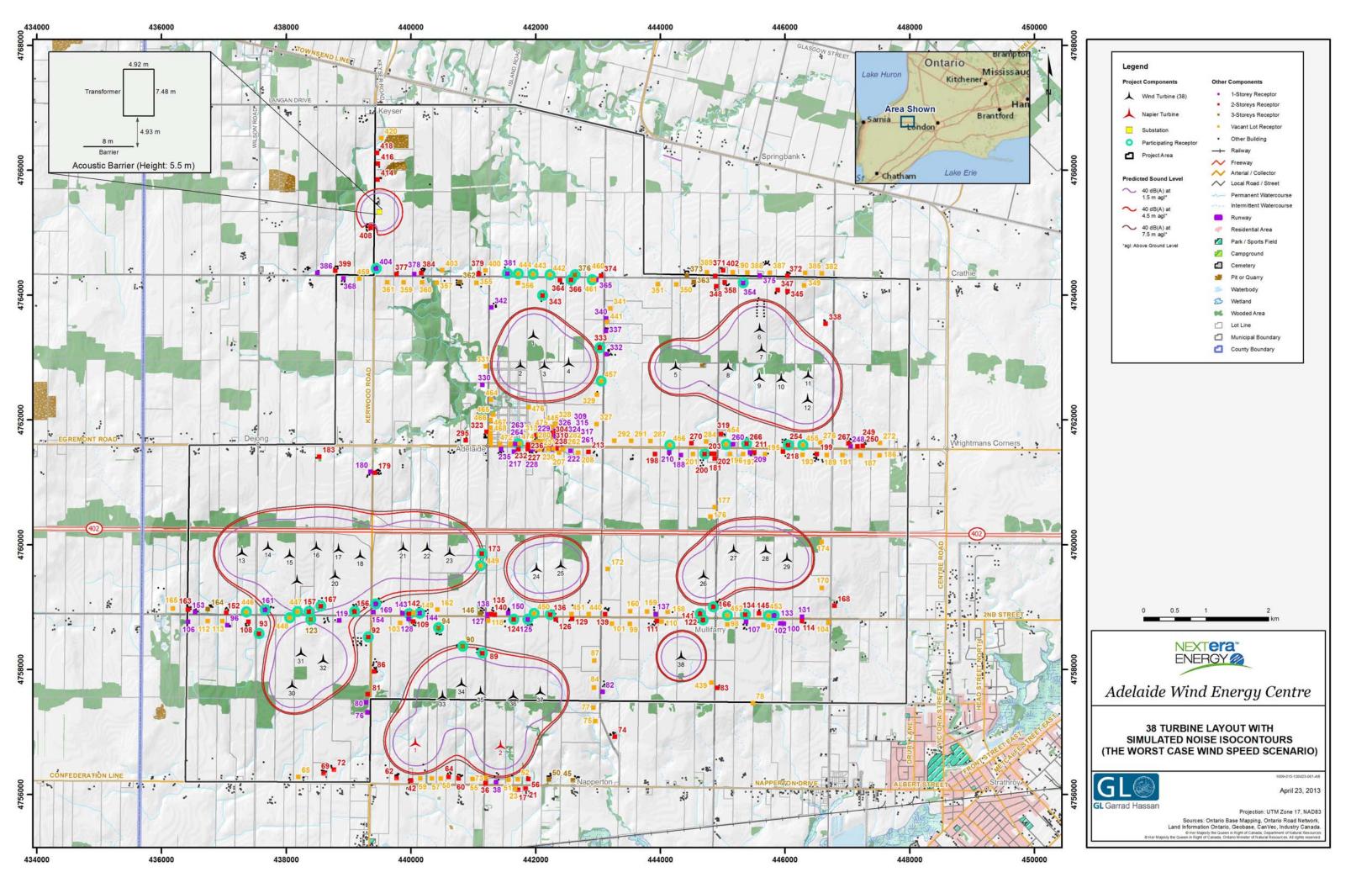
25

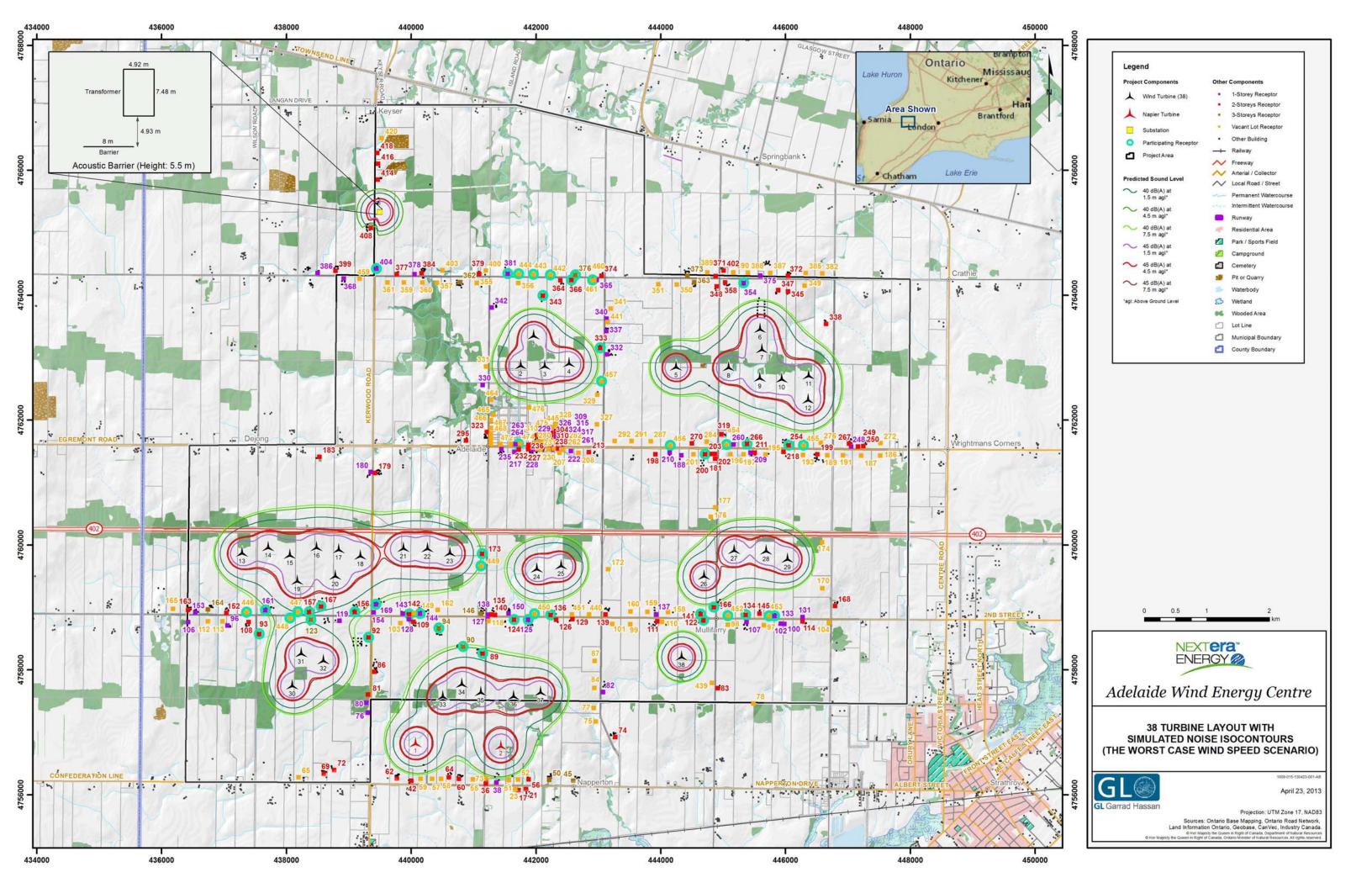
Document No. 1009-CAMO-		Ren	newable Energ	y Approval App	le Wind Energy	J Issue: F				
441,203	4,756,271	73	N/A	1363	550	35	N2	33.2	37.9	39.2
443,272	4,756,926	74	R090	1392	1842	37	N2	31.4	25.3	32.3
442,958	4,757,175	75	N/A	997	1575	37	N2	33.7	27.1	34.5
439,303	4,757,317	76	R013	1089	919	32	N1	33.5	30.6	35.2
442,928	4,757,390	77	N/A	889	1615	37	N2	34.6	26.8	35.2
439,284	4,757,478	80	R081	959	1030	32	N1	34.2	28.9	35.3
439,309	4,757,608	81	R123	894	1100	32	N1	36.6	30.9	37.6
443,072	4,757,647	82	R089	1000	1855	37	N2	32.2	22.9	32.7
442,939	4,757,713	84	N/A	870	1774	37	N2	35.0	25.8	35.5
439,409	4,757,971	86	R009	834	1332	32	N1	37.3	29.1	37.9
441,145	4,758,265	89	R012	602	1524	34	N2	40.3	28.9	40.6
440,833	4,758,373	90	R011	609	1714	34	N2	39.9	28.8	40.3
439,319	4,758,521	92	R010	818	1864	32	N1	38.3	25.6	38.5
440,444	4,758,669	94	R014	977	1888	34	N1	38.0	27.0	38.4
439,828	4,758,749	103	R128	1191	1948	21	N1	37.6	25.5	37.9
440,037	4,758,770	109	R015	1180	1953	21	N1	37.5	25.7	37.8
442,970	4,757,513	N/A	R125	905	1704	37	N2	34.5	26.2	35.1
442,766	4,757,172	N/A	R126	832	1389	37	N2	34.9	28.4	35.8


8 CONCLUSION

Based on the approach presented in this NIA, the Adelaide Wind Energy Centre is compliant with the MOE noise limits at all Points of Reception and Vacant Lot Receptors within 1,500 m of the Project's noise sources, for wind speeds of 6, 7, 8, 9, and 10 m/s.

9 REFERENCES


- [1] Ontario Regulation 359/09 (Renewable Energy Approvals (REA)
- [2] MOE Noise Guidelines for Wind Farms, Interpretation for Applying NPC Publications, October 2008.
- [3] International Electrotechnical Commission (IEC), 2006. IEC 61400 11 Ed. 2.1 Wind turbine generator systems Part 11: Acoustic noise measurement techniques. 46 p.
- [4] HGC Engineering, Acoustic Assessment Report: Napier Wind Project: Township of Adelaide Metcalfe, Ontario, 28 September 2012.
- [5] Handbook of Acoustics Malcolm J. Crocker, 1998.
- [6] International Organization for Standardization (ISO), 1993. Acoustics Attenuation of Sound During Propagation Outdoors Calculation of the Absorption of Sound by the Atmosphere. ISO 9613-1. 33 p.
- [7] International Organization for Standardization (ISO), 1996. Acoustics Attenuation of Sound During Propagation Outdoors - General Method of Calculation. ISO 9613-2. 25 p.


APPENDIX A ZONING AND NOISE ISO-CONTOUR MAPS

30

GL@ GL Garrad Hassan

APPENDIX B SAMPLE CALCULATION FOR NOISE MODELING

Resulting A-weighted Sound Pressure Level at a Points of Reception R_119 and V_73

The calculation of cumulative receptor noise levels from wind turbines uses the methodology of ISO 9613-2, "Acoustics — Attenuation of sound during propagation outdoors: Part 2: General method of calculation". These calculations are conducted with CadnaA (which is an implementation of ISO 9613-1 and ISO 9613-2).

As an example, in this appendix, the results are presented at Points of Reception R_{119} and V_{73} . The following conditions were used:

- Turbine locations (Appendix F);
- Receptor locations (Appendix C).

Turbine characteristics and modeling parameters:

- Hub heights: 80 m (GE 1.6 100), and 100 m (MM92);
- Ambient air temperature: 10°C;
- Ambient barometric pressure: 101.32 kPa;
- Relative humidity: 70%;
- Wind speed (10 m agl): 6 m/s;
- Source ground factor: 0.7
- Middle ground factor: 0.7;
- Receptor ground factor: 0.7;
- Tonality penalty for transformer: 5.0 dBA;
- Broadband and the octave band sound power levels (see Table 5-1 and Table 5-2);
- The effect of topography was included.

The following table presents an example result and intermediate values of the calculations as the A-weighted sound pressure levels at two chosen example receptors, due to each turbine or substation and each octave band. The A-weighted sound pressure levels at the example receptors R_119 and V_73 for all bands and all noise sources are 38.9 dBA and 39.2 dBA respectively.

Sample Calculations

Sound Pressure Levels at R_119

				Oct	ave Ban	d Sound [dBA	Pressure]	Levels			Total A- Weighted	
Turbine ID	Distance* [m]	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Broadband Sound Pressure Level by Turbine [dBA]	
N1	2347	N/A	8.6	10.1	13.0	14.2	11.5	-7.7	-69.6	N/A	18.9	
N2	3312	N/A	5.7	6.8	9.1	9.4	5.1	-19.9	N/A	N/A	14.6	
13	1867	0.0	10.4	11.7	13.1	14.4	15.0	1.5	-48.8	N/A	20.3	
14	1605	1.3	11.7	13.1	14.7	16.2	17.3	5.4	-38.9	N/A	22.2	
15	1288	3.3	13.6	15.2	16.9	18.7	20.3	10.4	-26.6	N/A	24.8	
16	1203	3.9	14.2	15.8	17.6	19.5	21.2	11.8	-23.2	N/A	25.6	
17	1119	4.5	14.9	16.5	18.3	20.3	22.2	13.2	-19.9	N/A	26.4	
18	1083	4.8	15.2	16.8	18.7	20.6	22.6	13.8	-18.4	N/A	26.8	
19	894	6.4	16.9	18.8	20.5	22.7	24.9	17.3	-10.5	N/A	29.0	
20	702	8.5	19.0	21.5	22.8	25.1	27.7	21.3	-2.1	-80.0	31.7	
21	1552	1.6	12.0	13.4	15.0	16.6	17.7	6.2	-36.9	N/A	22.6	
22	1834	0.2	10.5	11.8	13.3	14.6	15.3	2.0	-47.6	N/A	20.5	
23	2093	-1.0	9.3	10.6	11.9	13.0	13.2	-1.6	-57.2	N/A	18.9	
24	3292	-4.2	6.0	6.4	6.9	7.0	5.1	-16.9	N/A	N/A	13.4	
25	3684	-4.9	5.2	5.3	5.6	5.3	2.7	-21.6	N/A	N/A	12.0	
30	1291	3.2	13.6	15.1	16.9	18.7	20.3	10.3	-26.7	N/A	24.8	
31	803	7.4	17.8	20.0	21.5	23.8	26.2	19.1	-6.6	N/A	30.2	
32	700	8.6	19.0	21.5	22.9	25.2	27.8	21.3	-2.0	-79.7	31.7	
33	2089	-1.0	9.3	10.6	11.9	13.0	13.2	-1.6	-57.1	N/A	18.9	
34	2245	-1.6	8.7	9.9	11.1	12.1	12.0	-3.7	-62.8	N/A	18.0	
35	2575	-2.6	7.6	8.6	9.6	10.3	9.6	-8.1	-74.8	N/A	16.3	
36	3077	-3.7	6.5	7.0	7.7	7.9	6.4	-14.3	N/A	N/A	14.2	
37	3455	-4.5	5.7	5.9	6.4	6.3	4.1	-18.9	N/A	N/A	12.8	
	•	То	tal A-W	eighted S	Sound P	ressure l	Level	•			38.9	

*Includes the heights of noise sources and receptors and the required 30 meter radius around the 1-storey dwelling N/A indicates levels below -88.0 dBA or unavailable data at 31.5 Hz

Turbine	Distance*	Octave Band Sound Pressure Levels [dBA]				Total A-Weighted Broadband					
ID	[m]	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	Sound Pressure Level by Turbine [dBA]
N1	1254	N/A	14.2	17.0	23.5	25.2	21.4	8.2	-28.5	N/A	28.9
N2	550	N/A	21.3	24.6	31.3	33.6	31.0	22.0	1.4	-55.9	37.4
15	4754	-6.8	3.3	3.8	6.3	4.6	-2.8	-34.1	N/A	N/A	11.0
16	4578	-6.5	3.6	4.2	6.8	5.3	-1.9	-32.1	N/A	N/A	11.5
17	4347	-6.2	4.0	4.7	7.5	6.1	-0.6	-29.4	N/A	N/A	12.1
18	4080	-5.7	4.4	5.4	8.3	7.2	0.9	-26.3	N/A	N/A	12.9
19	4365	-6.2	3.9	4.7	7.5	6.1	-0.7	-29.6	N/A	N/A	12.1
20	4034	-5.6	4.5	5.5	8.4	7.3	1.2	-25.8	N/A	N/A	13.1
21	3902	-5.4	4.7	5.8	8.8	7.9	1.9	-24.2	N/A	N/A	13.5
22	3784	-5.2	5.0	6.1	9.2	8.3	2.6	-22.8	N/A	N/A	13.9
23	3641	-4.9	5.2	6.5	9.7	8.9	3.4	-21.1	N/A	N/A	14.4
24	3435	-4.5	5.6	7.0	10.4	9.8	4.7	-18.7	N/A	N/A	15.1
25	3598	-4.8	5.3	6.6	9.8	9.1	3.7	-20.6	N/A	N/A	14.5
26	4753	-6.8	3.3	3.8	6.3	4.6	-2.8	-34.1	N/A	N/A	11.0
30	3440	-4.6	5.6	7.0	10.3	9.8	4.6	-18.7	N/A	N/A	15.1
31	3569	-4.8	5.4	6.7	9.9	9.2	3.9	-20.3	N/A	N/A	14.6
32	3213	-4.1	6.1	7.6	11.1	10.8	6.0	-16.0	N/A	N/A	15.9
33	1473	2.1	12.5	14.9	19.5	20.7	18.9	7.4	-33.9	N/A	25.3
34	1546	1.7	12.0	14.5	19.0	20.1	18.3	6.3	-36.7	N/A	24.8
35	1366	2.7	13.1	15.7	20.3	21.6	20.0	9.1	-29.7	N/A	26.2
36	1374	2.7	13.1	15.6	20.2	21.5	19.9	9.0	-30.0	N/A	26.1
37	1616	1.3	11.6	14.1	18.6	19.6	17.6	5.2	-39.3	N/A	24.2
38	3679	-5.0	5.2	6.4	9.6	8.8	3.2	-21.6	N/A	N/A	14.2
Total A-Weighted Sound Pressure Level							39.2				

OUTING FLESSULE LEVELS AL V /.	Pressure Levels at V 7	13	
--------------------------------	------------------------	----	--

*Includes the heights of noise sources and receptors

N/A indicates levels below -88.0 dBA or unavailable data at 31.5 Hz

APPENDIX C COORDINATES OF POINTS OF RECEPTION

Coordinates of all modeled Points of Reception and Vacant Lot Receptors for the Adelaide Wind Energy Centre (UTM17-NAD83 projection) are given in the tables below:

Point of Reception ID	Easting [m]	Northing [m]
R_17	441720	4756075
R_21	441842	4756093
V_23	441670	4756094
R_36	441197	4756181
R_38	441366	4756200
R_42	440002	4756224
R_45	442598	4756229
R_50	442215	4756239
V_51	441566	4756234
V_52	441714	4756243
V_55	440988	4756249
R_56	441882	4756250
V_57	440337	4756256
V_58	440482	4756256
V_59	440150	4756258
R_60	440765	4756258
R_62	439769	4756263
R_64	440605	4756282
V_65	438195	4756284
R_69	438603	4756336
R_72	438767	4756399
V_73	441203	4756271
R_74	443272	4756926
V_75	442958	4757175
R_76	439303	4757317
V_77	442928	4757390
V_78	445484	4757462
R_80	439284	4757478
R_81	439309	4757608
R_82	443072	4757647
R 83	444912	4757711

Point of Reception ID	Easting [m]	Northing [m]
V_84	442939	4757713
R_86	439409	4757971
V_87	442941	4758147
R_96	437056	4758714
V_97	445653	4758716
V_98	445076	4758724
V_99	443513	4758734
R_100	445980	4758739
V_101	443224	4758740
R_102	445928	4758743
V_103	439828	4758749
V_104	446697	4758759
R_106	436426	4758768
R_107	445375	4758770
R_108	437395	4758770
R_109	440037	4758770
V_110	444023	4758772
R_111	443943	4758778
V_112	436743	4758779
V_113	436976	4758779
R_114	446273	4758781
V_118	441238	4758788
R_119	438850	4758789
R_126	442321	4758808
R_127	441227	4758810
R_128	439964	4758816
R_129	442586	4758816
R_131	446272	4758847
R_135	441344	4758884
R_137	443929	4758885
R_138	441230	4758887

Point of	Easting	Northing
Reception ID	[m]	[m]
R_139	443113	4758889
R_140	441286	4758889
R_143	439869	4758901
R_145	445584	4758902
R_146	441122	4758902
V_149	440040	4758906
R_150	441560	4758908
R_152	437038	4758917
R_153	436541	4758925
R_154	439397	4758925
V_158	444116	4758930
V_159	443788	4758933
V_160	443518	4758935
V_162	440427	4758961
R_163	436426	4758963
R_164	436743	4758970
V_165	436186	4758980
R_168	446792	4759026
V_170	446591	4759309
V_172	443158	4759613
V_174	446588	4760048
V_176	444804	4760454
V_177	444872	4760605
R_179	439423	4761154
R_180	439352	4761171
R_181	444870	4761383
R_183	438531	4761414
V_186	447516	4761433
V_187	447214	4761436
R_188	444329	4761437
V_189	446672	4761438

GL Garrad Hassan Canada, Inc.

Point of Reception ID	Easting [m]	Northing [m]
V_191	446921	4761441
V_193	446280	4761444
V_195	445682	4761452
V_196	445116	4761454
V_197	445330	4761454
R_198	443914	4761456
R_199	446510	4761456
V_201	444523	4761457
R_202	444822	4761459
R_203	444866	4761460
V_207	442378	4761475
V_208	442685	4761475
R_209	445440	4761479
R_210	444144	4761480
R_211	445505	4761483
R_213	442850	4761488
R_217	441653	4761493
R_218	445969	4761495
R_222	442560	4761507
R_227	442037	4761526
R_228	441921	4761529
R_229	441995	4761531
V_230	442204	4761531
V_231	442074	4761533
R_232	441725	4761533
R_233	442254	4761533
V_234	442439	4761534
R_235	441449	4761538
R_236	441876	4761538
R_238	442334	4761547
R_239	442101	4761547

R_2484470514761577R_2494471614761579R_2504472484761586V_2514420574761592R_2534419594761594R_2554422594761601R_2564423424761602R_2574418774761602R_2584422114761611R_2594422214761612R_2604451674761612R_2614424024761614V_2624423714761616R_2644416474761619R_2654422534761620R_26744470194761625R_2704445004761630V_2724475244761642V_2754420584761642V_2764465634761642V_2804419904761648V_2814425374761648V_282442404761665V_2844447384761655V_2854421034761665R_2904423234761665R_2904423234761665V_2914435344761665R_2954408794761674	Point of Reception ID	Easting [m]	Northing [m]
R_250 447248 4761586 V_251 442057 4761592 R_253 441959 4761594 R_255 442259 4761601 R_256 442342 4761602 R_257 441877 4761602 R_258 442311 4761611 R_259 442211 4761612 R_260 445167 4761612 R_261 442402 4761614 V_262 442371 4761616 R_264 441647 4761619 R_265 442253 4761620 R_267 447019 4761630 V_272 447524 4761634 V_275 442058 4761634 V_275 442058 4761642 V_280 441990 4761648 V_281 442537 4761648 V_285 442103 4761665 V_287 443841 4761665 R_290 442323 4761665 V_291 443264 4761666 V_292 443264 4761668	R_248	447051	4761577
$-$ 4420574761592 R_251 4420574761594 R_253 4419594761601 R_255 4422594761602 R_256 4423424761602 R_257 4418774761602 R_258 4423114761611 R_259 4422214761612 R_260 4451674761612 R_261 4424024761614 V_262 4423714761616 R_264 4416474761619 R_265 4422534761620 R_267 4470194761625 R_270 4445004761630 V_272 4475244761634 V_275 4420584761642 V_276 4465634761642 V_280 4419904761648 V_281 4425374761648 V_284 4447384761655 V_285 4421034761663 R_289 4424164761665 R_290 4432334761665 V_291 4432444761668 V_292 4432644761668	R_249	447161	4761579
R_253 441959 4761594 R_255 442259 4761601 R_256 442342 4761602 R_257 441877 4761602 R_257 441877 4761602 R_258 442311 4761611 R_259 442221 4761612 R_260 445167 4761612 R_261 442402 4761614 V_262 442371 4761616 R_264 441647 4761619 R_265 442253 4761620 R_267 447019 4761625 R_270 444500 4761630 V_272 447524 4761634 V_275 442058 4761642 V_276 446563 4761642 V_280 441990 4761648 V_281 442537 4761648 V_284 444738 4761655 V_285 442103 4761663 R_289 442416 4761665 R_290 442323 4761665 V_291 443534 4761666 V_292 443264 4761668	R_250	447248	4761586
R_2255 442259 4761601 R_2256 442342 4761602 R_257 441877 4761602 R_258 442311 4761611 R_259 442221 4761612 R_260 445167 4761612 R_260 445167 4761612 R_261 442402 4761614 V_262 442371 4761616 R_264 441647 4761619 R_265 442253 4761620 R_267 447019 4761625 R_270 444500 4761630 V_272 447524 4761634 V_275 442058 4761642 V_276 446563 4761642 V_280 441990 4761648 V_281 442537 4761648 V_285 442103 4761665 V_287 443841 4761665 V_289 442416 4761665 R_290 442323 4761665 V_292 443264 4761668	V_251	442057	4761592
R_2564423424761602R_2574418774761602R_2584423114761611R_2594422214761612R_2604451674761612R_2614424024761614V_2624423714761616R_2644416474761619R_2654422534761620R_2704445004761630V_2724475244761634V_2754420584761642V_2764465634761642V_2804419904761648V_2814425374761648V_282442404761655V_2854421034761665R_2894424164761665R_2904432344761665V_2914435344761666V_2924432644761668	R_253	441959	4761594
R_257 441877 4761602 R_258 442311 4761611 R_259 442221 4761612 R_260 445167 4761612 R_261 442402 4761614 V_262 442371 4761616 R_264 441647 4761629 R_265 442253 4761620 R_267 447019 4761625 R_270 444500 4761630 V_272 447524 4761642 V_275 442058 4761642 V_276 446563 4761642 V_280 441990 4761648 V_281 442537 4761648 V_282 442480 4761655 V_285 442103 4761665 V_287 443841 4761665 R_290 442323 4761665 V_291 443534 4761666 V_292 443264 4761668	R_255	442259	4761601
$ -$ R_2584423114761611R_2594422214761612R_2604451674761612R_2614424024761614 V_262 4423714761616R_2644416474761619R_2654422534761620R_2674470194761625R_2704445004761630 V_272 4475244761634 V_275 4420584761642 V_276 4465634761642 V_280 4419904761648 V_281 4425374761648 V_282 4424804761655 V_285 4421034761663 R_289 4424164761665 R_290 4423234761665 V_291 4435344761666 V_292 4432644761668	R_256	442342	4761602
R_2594422214761612R_2604451674761612R_2614424024761614V_2624423714761616R_2644416474761619R_2654422534761620R_2674470194761625R_2704445004761630V_2724475244761634V_2754420584761642V_2764465634761642V_2804419904761648V_2814425374761648V_2824424804761655V_2854421034761665R_2894424164761665R_2904432344761665V_2914435344761666V_2924432644761668	R_257	441877	4761602
R_260 445167 4761612 R_261 442402 4761614 V_262 442371 4761616 R_264 441647 4761619 R_265 442253 4761620 R_267 447019 4761625 R_270 444500 4761630 V_272 447524 4761634 V_275 442058 4761642 V_276 446563 4761642 V_280 441990 4761648 V_281 442537 4761648 V_282 442480 4761655 V_285 442103 4761665 V_287 443841 4761663 R_289 442416 4761665 R_290 442323 4761665 V_291 443534 4761668	R_258	442311	4761611
R_261 442402 4761614 V_262 442371 4761616 R_264 441647 4761619 R_265 442253 4761620 R_267 447019 4761625 R_270 444500 4761630 V_272 447524 4761634 V_275 442058 4761642 V_276 446563 4761642 V_280 441990 4761648 V_281 442537 4761648 V_282 442480 4761655 V_285 442103 4761663 R_289 442416 4761665 R_290 442323 4761665 V_292 443264 4761668	R_259	442221	4761612
$ V_262$ 442371 4761616 R_264 441647 4761619 R_265 442253 4761620 R_267 447019 4761625 R_270 444500 4761630 V_272 447524 4761634 V_275 442058 4761642 V_276 446563 4761642 V_280 441990 4761648 V_281 442537 4761648 V_282 442480 4761649 V_284 444738 4761655 V_285 442103 4761663 R_289 442416 4761665 R_290 442323 4761665 V_291 443534 4761666 V_292 443264 4761668	R_260	445167	4761612
R_264 441647 4761619 R_265 442253 4761620 R_267 447019 4761625 R_270 444500 4761630 V_272 447524 4761634 V_275 442058 4761642 V_276 446563 4761642 V_280 441990 4761648 V_281 442537 4761648 V_282 442480 4761649 V_284 444738 4761655 V_285 442103 4761663 R_289 442416 4761665 R_290 442323 4761665 V_291 443534 4761668	R_261	442402	4761614
R_2654422534761620R_2674470194761625R_2704445004761630 V_272 4475244761634 V_275 4420584761642 V_276 4465634761642 V_280 4419904761648 V_281 4425374761648 V_282 4424804761649 V_284 4447384761655 V_285 4421034761660 V_287 4438414761665 R_289 4424164761665 R_290 4423234761665 V_292 4432644761668	V_262	442371	4761616
R_2674470194761625R_2704445004761630V_2724475244761634V_2754420584761642V_2764465634761642V_2804419904761648V_2814425374761648V_2824424804761649V_2844447384761655V_2854421034761660V_2874438414761663R_2894424164761665R_2904423234761665V_2914435344761666V_2924432644761668	R_264	441647	4761619
R_2704445004761630 R_270 4445004761630 V_272 4475244761634 V_275 4420584761642 V_276 4465634761642 V_280 4419904761648 V_281 4425374761648 V_282 4424804761649 V_284 4447384761655 V_285 4421034761660 V_287 4438414761663 R_289 4424164761665 R_290 4423234761665 V_291 4435344761666 V_292 4432644761668	R_265	442253	4761620
V_2272 447524 4761634 V_2275 442058 4761642 V_276 446563 4761642 V_280 441990 4761648 V_281 442537 4761648 V_282 442480 4761649 V_284 444738 4761655 V_285 442103 4761660 V_287 443841 4761663 R_289 442416 4761665 R_290 442323 4761665 V_291 443534 4761666 V_292 443264 4761668	R_267	447019	4761625
V_275 442058 4761642 V_276 446563 4761642 V_280 441990 4761648 V_281 442537 4761648 V_282 442480 4761649 V_284 444738 4761655 V_285 442103 4761660 V_287 443841 4761663 R_289 442416 4761665 V_291 443534 4761666 V_292 443264 4761668	R_270	444500	4761630
V_276 446563 4761642 V_280 441990 4761648 V_281 442537 4761648 V_282 442480 4761649 V_284 444738 4761655 V_285 442103 4761660 V_287 443841 4761663 R_289 442416 4761665 V_291 443534 4761666 V_292 443264 4761668	V_272	447524	4761634
V_280 441990 4761648 V_281 442537 4761648 V_282 442480 4761649 V_284 444738 4761655 V_285 442103 4761660 V_287 443841 4761663 R_289 442416 4761665 V_291 443534 4761666 V_292 443264 4761668	V_275	442058	4761642
V_281 442537 4761648 V_282 442480 4761649 V_284 444738 4761655 V_285 442103 4761660 V_287 443841 4761663 R_289 442416 4761665 R_290 442323 4761665 V_291 443534 4761668 V_292 443264 4761668	V_276	446563	4761642
V_282 442480 4761649 V_284 444738 4761655 V_285 442103 4761660 V_287 443841 4761663 R_289 442416 4761665 R_290 442323 4761665 V_291 443534 4761666 V_292 443264 4761668	V_280	441990	4761648
V_2284 444738 4761655 V_2285 442103 4761660 V_2287 443841 4761663 R_2289 442416 4761665 R_2290 442323 4761665 V_291 443534 4761666 V_292 443264 4761668	V_281	442537	4761648
V_285 442103 4761660 V_287 443841 4761663 R_289 442416 4761665 R_290 442323 4761665 V_291 443534 4761666 V_292 443264 4761668	V_282	442480	4761649
V_287 443841 4761663 R_289 442416 4761665 R_290 442323 4761665 V_291 443534 4761666 V_292 443264 4761668	V_284	444738	4761655
R_289 442416 4761665 R_290 442323 4761665 V_291 443534 4761666 V_292 443264 4761668	V_285	442103	4761660
R_290 442323 4761665 V_291 443534 4761666 V_292 443264 4761668	V_287	443841	4761663
V_291 443534 4761666 V_292 443264 4761668	R_289	442416	4761665
V_292 443264 4761668	R_290	442323	4761665
	V_291	443534	4761666
R_295 440879 4761674	V_292	443264	4761668
	R_295	440879	4761674

	[
Point of Reception ID	Easting [m]	Northing [m]
V_296	442256	4761678
R_304	442411	4761701
R_309	442324	4761731
R_310	442408	4761732
R_311	441993	4761755
V_312	442117	4761765
V_313	442048	4761765
R_314	442243	4761766
R_315	442428	4761770
R_317	442367	4761774
R_319	444973	4761778
R_320	442242	4761797
R_322	442324	4761805
R_323	441212	4761811
R_324	442371	4761836
R_325	442430	4761840
R_326	442321	4761874
V_327	442981	4761936
V_328	442321	4761978
V_329	442984	4762407
R_330	441146	4762567
V_331	441200	4762863
R_332	443140	4763056
R_337	443128	4763430
R_338	446649	4763542
R_340	443131	4763628
V_341	443201	4763790
R_342	441292	4763805
R_345	446039	4764066
R_347	445882	4764085
R_348	444897	4764144

GL Garrad Hassan Canada, Inc.

Point of Reception ID	Easting [m]	Northing [m]
V_349	446307	4764158
V_350	444259	4764174
V_351	443963	4764177
V_355	441055	4764198
V_356	441719	4764198
V_357	440414	4764203
R_358	445034	4764206
V_359	439883	4764206
V_360	440182	4764206
V_361	439621	4764208
R_362	440787	4764211
R_363	444536	4764214
R_364	442391	4764241
R_365	442971	4764244
R_368	438921	4764270
R_371	444879	4764308
R_372	446038	4764313
R_373	444429	4764314
R_374	443049	4764315
R_375	445596	4764316
R_377	439771	4764337
R_378	440056	4764339
R_379	441085	4764344
V_382	446590	4764351
R_384	440169	4764357
V_385	446323	4764359
R_386	438500	4764359
V_387	445756	4764362
V_388	445397	4764365
V_389	444748	4764367
V_390	445164	4764367

Point of Reception ID	Easting [m]	Northing [m]
R_399	438790	4764393
V_400	441195	4764396
R_402	445009	4764400
V_403	440502	4764402
R_408	439355	4765081
R_414	439465	4765854
R_416	439468	4766107
R_418	439458	4766283
V_420	439528	4766518
V_439	444820	4757792
V_440	442851	4758890
V_441	443146	4763574
V_445	442241	4761891
V_451	442579	4758890
V_458	442018	4761542
V_459	439173	4764268
V_460	442939	4764246
V_462	442284	4761546
V_464	441281	4762327
V_465	441321	4762088
V_466	441277	4762000
V_467	441279	4761878
V_468	441276	4761786
V_469	441276	4761734
V_470	441276	4761670
V_471	441277	4761620
V_472	441430	4761620
V_473	441599	4761622
V_474	441745	4761624
V_475	442320	4761901
V_476	441889	4762205

GL Garrad Hassan Canada, Inc.

39

APPENDIX D COORDINATES OF PARTICIPANTS

Coordinates of all modeled participants for the Adelaide Wind Energy Centre (UTM17-NAD83 projection) are given in the table below.

Participant ID	Easting [m]	Northing [m]
PR_89	441145	4758265
PR_90	440833	4758373
PR_92	439319	4758521
PR_93	437566	4758576
PR_94	440444	4758669
PR_122	444685	4758796
PR_123	438394	4758805
PR_124	441649	4758806
PR_125	441873	4758807
PR_133	445824	4758864
PR_134	445361	4758883
PR_136	442235	4758884
PR_141	444639	4758896
PR_142	439969	4758896
PR_144	440144	4758901
PR_156	439096	4758927
PR_157	438364	4758928
PR_161	437664	4758957
PR_166	444852	4759004
PR_167	438554	4759016
PR_169	439437	4759052
PR_173	441138	4759859
PR_200	444711	4761456
PR_254	446051	4761598
PR_263	441719	4761618
PR_266	445382	4761621
PR_333	443029	4763156
PR_343	442111	4763994
PR_354	445329	4764198
PR_366	442570	4764245
PR_376	442634	4764327
PR_381	441549	4764348
PR_404	439445	4764426
PV_442	442228	4764326
PV_443	441958	4764335
PV_444	441723	4764344

GL Garrad Hassan Canada, Inc.

Participant ID	Easting [m]	Northing [m]
PV_446	437363	4758923
PV_447	438183	4758927
PV_448	438055	4758830
PV_449	441117	4759664
PV_450	441977	4758899
PV_452	445073	4758871
PV_453	445734	4758867
PV_454	445052	4761608
PV_455	446284	4761598
PV_456	444151	4761597
PV_457	443052	4762624
PV_461	442906	4764245

APPENDIX E TURBINE AND TRANSFORMER TECHNICAL SPECIFICATIONS

GE Energy

Parker D. Powell Technical Leader

March 19, 2013

Don Karwisch NextEra Energy Resources 700 Universe Blvd Juno Beach, FL 33408

RE: Tonality of 1.6-100 Wind Turbine Generator

Mr. Karwisch:

On September 20, 2012, I responded to your request to help respond to the Ministry of Environment's request to "Provide a letter and report from manufacturer indicating that GE1.6-100, 1.62 MW is not tonal based on IEC 61400-11-ed.2.1: 2006. State the tonality of the turbines in the report."

IEC 61400-11 only requires a report of any tonality that exceeds 3dB, but appears not to define the term "tonal".

The 1.6-100 turbine (with or without low-noise trailing edges) has an expected value for tonal audibility of $\Delta La, k < 2$ dB, irrespective of wind speed, hub height, and grid frequency based on the IEC 61400-11 standard and thuse does not require a report.

Nonetheless, please refer to the attached report on the 1.6-100 with LNTE's, the model NextEra plans to install, for more detailed acoustic information. This is an updated version of what was provided with my September 20, 2012 letter. The following changes were made:

- Tabel 1 was replaced to include lower wind speeds and to update the low frequencies based on measurement data.
- The description for Audible Tonality was updated to conform with IEC 61400-11 standard. It . now says, "The tonal audibility (\$\Delta La,k), when measured in accordance with the IEC 61400-11 standard, for the GE's 1.6-100 with LNTE is less than or equal to 2 dB.".

Best regards

D. Powel

Attachment:

Technical Description of the 1.6-100 Wind Turbine with Low-Noise Trailing Edges (LNTE's) and Major Components Rev 3

GE Energy Bldg. 53-405B 1 River Road Schenectady, NY 12345

1 Phone 518-385-5838 518-867-6298 email parker.powell@ge.com

Cell

GE Power & Water

- Original Instructions -

Product Acoustic Specifications

2 Normal Operation Calculated Apparent Sound Power Level

The apparent sound power levels Lwak are initially calculated as a function of the hub height wind speed VHH. The corresponding wind speeds v_{10m} at 10 m height above ground level have been evaluated assuming a logarithmic wind profile. In this case a surface roughness of $z_{0ref} = 0.05$ m has been used, which is representative of average terrain conditions.

$$v_{10m} = v_{HH} \frac{\ln(10m/z_{0ref})}{\ln(hub height/z_{0ref})}$$

The calculated apparent sound power levels L_{WAk} and the associated octave-band spectra are given in Table 1 and Table 2 for two different hub heights. The values are provided as mean levels as a function of v10m for Normal Operation (NO) over cut-in to cut-out wind speed range. The uncertainties for octave sound power levels are generally higher than for total sound power levels. Guidance is given in IEC 61400-11, Annex D.

Standard wind speed of	at 10 m [m/s]	3	4	5	6	7	8	9	10-Cutout
Hub height wind speed	d at 80 m (m/s)	4.2	5.6	7.0	8.4	9.7	11.1	12.5	14-Cutout
	31.5	62.5	62.2	66.1	70.1	73.5	73.7	73.6	73.5
	63	72.1	71.9	75.9	80.3	84.0	84.1	84.1	84.0
	125	79.0	79.2	83.8	88.4	91.6	91.8	91.8	91.7
	250	84.0	84.6	89.4	94.7	95.4	95.3	95.4	95.5
Frequency	500	85.5	84.9	89.7	95.5	97.1	96.6	96.7	97.0
(Hz)	1000	83.4	83.0	86.9	91.8	97.1	97.5	97.6	97.8
	2000	81.7	83.4	87.9	92.4	95.7	95.7	95.5	95.1
	4000	74.9	77.7	83.5	88.9	89.7	89,1	88.4	87.9
	8000	55.5	57.6	63.5	70.3	70.4	70.6	69.4	69.1
	16000	7.9	13.2	18.9	24.7	27.2	26.6	27.5	29.0
Total apparent sound L _{WA.k} [dB]	90.4	90.7	95.3	100.5	103.0	103.0	103.0	103.0	

Table 1: Normal Operation Calculated Apparent Sound Power Level, 1.6-100 with LNTE with 80 m hub height as a function of 10 m wind speed ($z_{0ref} = 0.05$ m), the octave band spectra are for information only

* Simplified from IEC 61400-11, ed. 2.1: 2006 equation 7

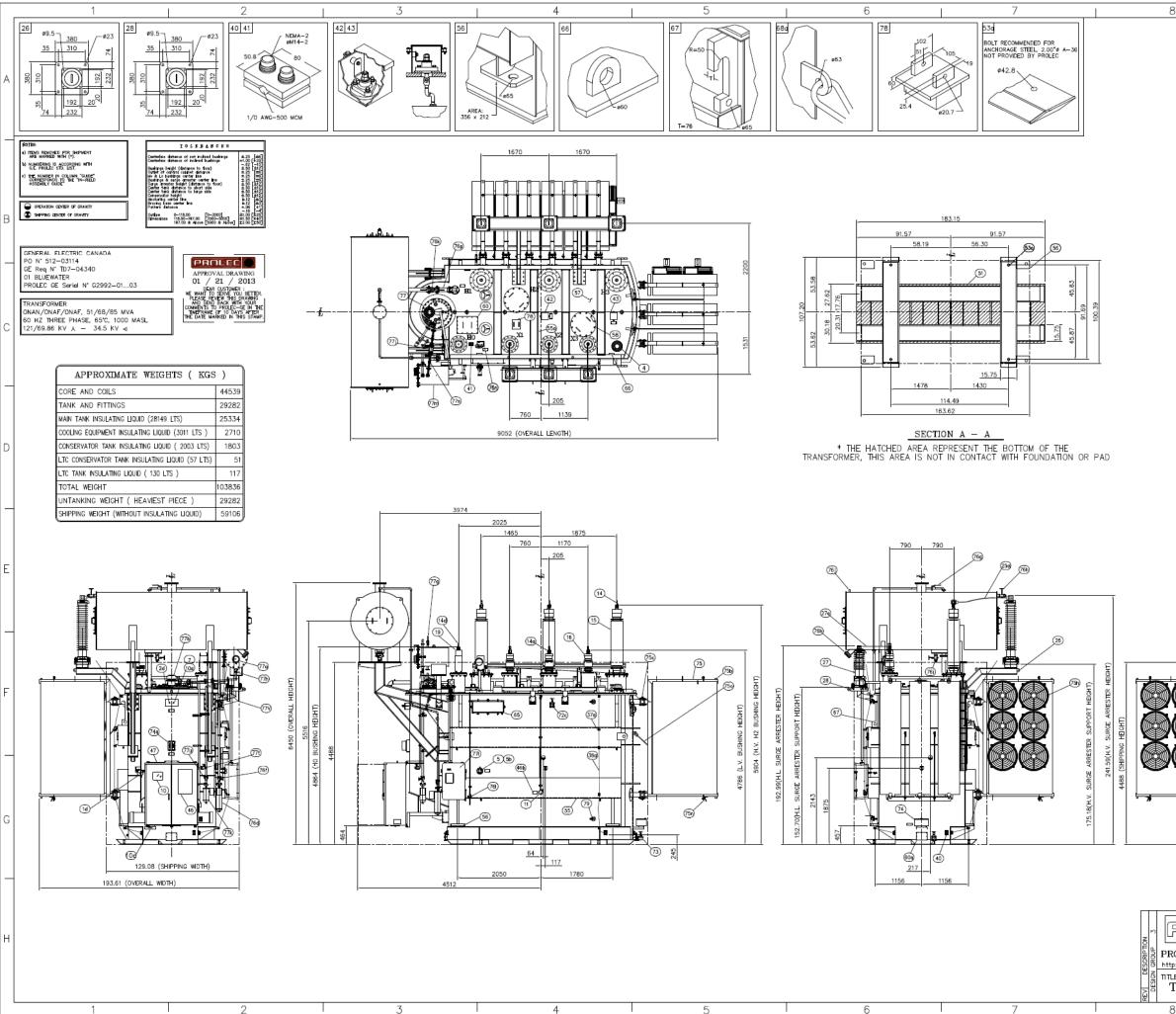
CONFIDENTIAL - Proprietary Information. DO NOT COPY without written consent from General Electric Company. UNCONTROLLED when printed or transmitted electronically. © 2013 General Electric Company. All rights reserved

6/11

1.6-100_xxHz_SCD_allComp_NO_IEC_LNTE.ENxxx01.docx

REPower MM92 2.05 MW Turbine

Make and Model:		REpower, MM92										
Electrical Rating:		2050 k	W									
Hub Height (m):		100 m										
Wind Shear Coefficient:		0.5										
			0	ctave Ba	and Soun	d Power	Level (dB)				
	Ma	nufactu	rer's En	nission L	evels		Adjuste	d Emissi	on Leve	ľ		
Wind Speed [m/s]	6	7	8	9	10	6	7	8	9	10		
Frequency [Hz]												
63	109.0	110.5	111.0	110.8	111.8	110.5	110.5	110.5	110.5	110.5		
125	107.7	108.4	108.3	107.9	106.6	108.4	108.4	108.4	108.4	108.4		
250	106.0	106.5	105.7	105.3	103.4	106.5	106.5	106.5	106.5	106.5		
500	102.1	102.9	102.6	102.3	101.5	102.9	102.9	102.9	102.9	102.9		
1000	97.1	98.1	98.7	99.0	99.3	98.1	98.1	98.1	98.1	98.1		
2000	90.4	91.3	92.2	92.8	95.3	91.3	91.3	91.3	91.3	91.3		
4000	82.8	83.8	85.1	86.2	91.7	83.8	83.8	83.8	83.8	83.8		
8000	74.2	75.7	78.5	79.5	82.3	75.7	75.7	75.7	75.7	75.7		
Overall A-Weighted	103.4	104.2	104.2	104.2	104.2	104.2	104.2	104.2	104.2	104.2		


NEXT era ENERGY	2	ADELAIDE (RMER SPECIFIC COLLECTION S L REQUIREMEN	TATION	Spec Rev. Date Page	7/24/1	
			TRANSFORME	RRATINGS			
Application: (Wind	Farm / Solar)) Generator Step	-Up (GSU)				
Phase			YV Volts	ZV(TV) Volts	Sound		
Frequency	60	Class	121 kV	34.5kV	1		Level

			** * *				I V VUI	LS = LV(1)		Sound	
Frequency	60	Class	12	21 kV	34	.5kV	1		/	Level	
Cooling medium	oling medium Oil		Connection Wye Delta					dBA			
Phasor Diagram	YND1	ONAN	51	MVA	51	MVA	M	(VA	MVA		
Oil preservation	Conservator	ONAF	68	MVA	68	MVA	M	ÍVA	MVA	Top	
	/diaphragm	ONAF	85	MVA	85	MVA	M	ΓVA	MVA	ONAF	
ADDITIONAL 7	TAP VOLTAGE	ES								orun	
Terminal Style			Taps or kV								
remman	Style			Taps	orkv				apacity		
HV	MR	±	10 % H			Taps ULT	C)		Capacity apacity U	LTC	
		±	10 % H	V Line Vo		Taps ULT	C)		apacity apacity U N/A	LTC	
HV	MR N/A			V Line Vo	ltage (33 I/A		C)		apacity U	LTC	
HV XV	MR N/A			V Line Vo N MPERAT	ltage (33 I/A			Full Ca	apacity U N/A		
HV XV PERCENT IMPI	MR N/A EDANCE VOL'	TS	TE Wind	V Line Vo N MPERAT	ltage (33 I/A		°C	Full Ca	apacity U N/A PD =	LTC <300 pC < 100 uV	
HV XV PERCENT IMPI %	MR N/A EDANCE VOL' Windings	TS At MVA	TE Wind Metz	V Line Vo N MPERAT	ltage (33 I/A URE RI	SES	°C ≤65	Full Ca MVA Top ONAF	apacity U N/A PD =	<300 pC	

			V	Vinding and	Bushing Ra	tings				
		Win	Bushing							
Terminal	MVA	Voltage	BIL	Ampere	Class	BIL	Ampere	Min St	rike Dist	Ext. Creep
		(kV)	(kV)	(A)	(kV)	(kV)	(A)	Ph to Ph	Ph to Gnd	LAL CICCP
HV Line	85	121	550		145	650				
HV Neutral			200		36	200				
XV Line	85	34.5	200		36	200				
XV Neutral										
YV Line										
YV Neutral										

UNUSUAL SERVICE CONDITIONS Yes x No (Check one) – Conform to CSA-C88-M90	FOUNDATION Specific Details and Measurements		
Ambient Temp. in °C (Max, Avg, Min)	38, 20, -30	Foundation Type:	
Elevation/Wind Speed	See Exhibit 2	Distance from Center of Foundation:	
Seismic Zone Designation (see Appendix H)	See Exhibit 2	To Segment 1	
Snow/Ice Accumulation (under energized, but no load)	See Exhibit 2	To Segment 2	
Short-time emergency Overloading (except GSU)	See IEEE	To Segment 3	
Long-time emergency Overloading (except GSU)	C57.91-1995 Table 8	To Segment 4	LOSS EVALUATION
Abnormal harmonic currents solid-state short circuits	no	No Load losses per kW will be evaluated at	See Appendix F
Geomagnetically Induced Current (GIC) location	yes	Load losses per kW will be evaluated at	See Appendix F
High-current isolated-phase bus duct connection	no	Auxiliary losses per kW will be evaluated at	See Appendix F
Parallel operation	yes		1
Neutral grounding resistor	no		

Exhibit 1 NEXTERA ENERGY Transformer Detailed Requirements

B PR

8					9	10	
	GUIDE		QTY.	LIKON	DESCRIPTION	CAT /MOD	
F	3		1	1d 2d		QUALITROL, 104-685-03	
	5.4 5.6	:	ļ	20 4 5	THERMO-WELL FOR LIGHD EMPERATURE INDICATOR PRESSURE RELIEF DEVICE WITH SEMAPHORE (63PR-1)	QUALITROL, 208-60F QUALITROL, 900-003-02	
			1	5b 7 10	THERNO-WELFOR RESISTANCE TOPPERATURE DEVICE FOR ETM (TOP) ELECTRONIC TEMPERATURE MONITOR (INSIDE CONTROL CABINET).	APT, ECLIPSE-000H	A
			1	10a 10c 11	RESISTANCE TEMPERATURE DEVICE FOR ETM (TOP OLL) RTD-1 RESISTANCE TEMPERATURE DEVICE FOR ETM (AMBIENT) RTD-2 PRESSURE-VACUUM GAUGE FOR SHIPPNG	QUALITROL, 050-35E	(^)
	5.15 5.15 5.15	:	3 3 1	14 14a 14d	H.V. BUSHING DYTERNAL CONNECTOR. LV. BUSHING EXTERNAL CONNECTOR. NEUTRAL BUSHING HO EXTERNAL CONNECTOR.	BURNDY, FD67C12W BURNDY, FD67C12W BURNDY, FD67C12W	
	5.15 3.2 3.2 3.2	:	3 3 1	15 16 19	H.V. BUSHING. L.V. BUSHING. NEUTRAL BUSHING HO	PCORE, PO0650008005 PCORE, 888823-70 ABB 034Z0412UT	
	4.2 4.1	÷	31	26	H.V. SURGE-ARRESTER SUPPORT		\vdash
	4.2 4.1	:	3 1	27 27a 28	L.V. SURGE-ARRESTER. L.V. SURGE-ARRESTER REXISE CONNECTOR L.V. SURGE-ARRESTER SUPPORT CAUSE CONNECTOR H.V. SURGE-ARRESTERS COPPER CROUND CALLE L.V. SURGE-ARRESTERS COPPER CROUND CALLE L.V. SURGE-ARRESTERS COPPER CROUND CALLE CROWN PAD NOTITAL HO CROWNO PAD DOTAGE CROWN DISHING TEMMAL BOX (MAN UNIT) CORE CROWN DISHING TEMMAL BOX (MAN UNIT)	SIEMENS 3EQ4 045-2PD31-4NH5	
		÷	5	28 37 37a 38 38a 40	H.V. SURGE-ARRESTERS GROUND CABLE CONNECTOR LV. SURGE-ARRESTERS GROUND CABLE CONNECTOR H.V. SURGE-ARRESTERS COPPER GROUND CABLE		
		ľ	5	300 40 41 42 43	LV. SURGE-ARRESIDES COPPER GROUND CABLE GROUND PAD NEUTRAL HO GROUND PAD GOEC COPUNE DURING DEPUNAL DOX (AANT LINET)		
			1	43 46	NAMEPLATE		
			ĺ	46 46b 47 51 53d 55 55d	NAMEPLATE DEVINITION NAMEPLATE CONTROL CARINET REINFORCED BASE WED DED TO TANK TRANSFORMER ANCHOR PAOS EXTENSIONS		В
			5 4 4	55 55d 56	COVER BRACES		
			1	57 58 60 60q	UNCANG FAUS AND PULLING ETES INSPECTION MANHQLE (COVER) INSPECTION RECTANGULAR MANHQLE (COVER) INSPECTION RECTANGULAR MANHQLE (MALL)		
			21234	00	CT TERMINAL BOX		
			4	66 67 68a	UFTING EVE COVER ONLY UFTING HOOK FOR UFTING COMPLETE UNIT SHIPPING LUGS FOR SEQURING THE UNIT LONGTUDINALLY (LONG LUGS)		
			1	72c 73 74 74d	UP THE HOOK FUR UP THE COMPLETE UNIT SHIPPING LUGS FOR SECURING THE UNIT LOURTUDINALLY (LONG LUGS) TOP FLIER FRESS VALVE (50.8 #) (LOBE-TYPE MAIN TANK DRAWN VALVE (50.8 ULOBE-TYPE WITH SAMPLING DEVICE (9.55) AND PLUG INFORMET RECORDER FOR SHIPPING		
	1.3	ŀ	1 9 18	75 75b			С
	1.4		18 12 4 7	756	RADIATOR VENT AND DRAIN PLUG (25.4 a) RADIATOR VALVE BUTTERELY-TYPE (101.6 a) COOLING FAN	KRENZ, F26D-A9712	Ŭ
	1.4 1.2 2.3 2.1 2.2	:	12	75n 75o 76 76g	COUCING FAX ADJATOR SUPPORTS DEVINOTION ADJATOR SUPPORTS CONSERVATOR TANK WITH INTERNAL BLADDER CONSERVATOR TANK SUPPORT CONSERVATOR MAGNETIC LIQUID LEVEL GAUGE (710–1)		
	2.2 5.8	:	1 1 2	76b 76c	CONSERVATOR MACHETC LIQUID LEVEL GAUGE (710-1)	QUALITROL, 042–144–07 MESSKO, DB200–RM–T	
	5.8	٠	1	76e 76f 76g 76h	CONSERVATOR MANHOLE SILCA-GEL SHUT OFF VALVE (12.7 ø) BALL-TYPE CONSERVATOR PRESSURE EQUALIZATION VALVE (25.4 ø) GLOBE-TYPE		\vdash
				76h 76i 76j	CONSERVATOR FILL VALVE (SOL8 #) CLOBE TYPE CONSERVATOR DRAIN VALVE (SOL8 #) GLOBE-TYPE CONSERVATOR TANK NIPPLE FOR VENT WITH CAP.		
	2.2 5.13	:		76k 76i 76n	CONSERVATOR TANK TO MAIN TANK VALVE (76.2 ø) BALL-TYPE GAS SAMPUNG DEVICE (AS ACCUMULATION DEVICE (63G-1)	QUALITROL, 038-002-02	
	2.4	*	1	76p 77 77a	EXPANSION JOINT FOR PIPING ON-LOAD TAP-CHANGER LTC MAGNETIC LIQUID LEVEL GAUGE (710-2)	MR, VMII650Y-72.5-B18353W QUALTROL, 032-088-01 CS32146 QUALTROL 208-607	
	5.4	1	ł	77b 77g 77h	SILCA-OEL BREATHER WITH PIPE OWSERVATOR NEARCE, VVV (12.7 a) BALL-TYPE OWSERVATOR NEARCE, VVV (12.7 a) BALL-TYPE CONSERVATOR PRESSURE COUNLIZATION VALVE (25.4 a) GLOBE-TYPE CONSERVATOR PRESSURE COUNLIZATION VALVE (25.4 a) CONSERVATOR DRAIN VALVE (25.6 a) GLOBE-TYPE CONSERVATOR DRAIN VALVE (35.6 a) DECASION JOINT FOR PIPING DI-LSAG TAT-CHARGER GLOBE COULD (35.6 a) DECASION JOINT FOR PIPING DI-LSAG TAT-CHARGER CAS ACCUMULATION DEVICE (35.9 c) DI-LSAG TAT-CHARGER CAS ACCUMULATION DEVICE (35.9 c) DI-LSAG TAT-CHARGER TO TO FREENE RELIP FORKE (35.9 c) DI-LSAG TAT-CHARGER TO TO FREENE RELIP FORKE (35.9 c) DI-LSAG TAT-CHARGER CONSERVATOR TANK TO CONSERVATOR TANK TO CONSERVATOR TANK SUPPORT TO CONSERVATOR TANK SUPPORT TO CONSERVATOR TANK SUPPORT TO SUPECE MATHER-TYPE LIC CONSERVATOR TANK SUPPORT THERE DELLA DOWNTOR FARK SUPPORT THERE DELLA DOWNTOR FARK SUPPORT THERE DELLA DOWNTOR FARK SUPPORT THERE PIPE MONTHOR FARK SUPPORT THERE PIPE PIPE MONTHOR FARK SUPPORT THERE PIPE MONTHOR FAR	QUALITROL 208-607	D
	5.8	:	1	<u>77</u>	LTC PROTECTIVE RELAY RS-2003 LTC SULCA-GEL BREATHER WITH PIPE (AFDB-1) LTC WOTOR DRIVE CABINET	MESSKO, DB100RM-HT	
	5.7	:	1 2 1	771 77m 77s 77i 77i	LIC CONSERVAIOR IANK ITC VALVE (1.00 a) BALL-TYPE LTC SUCTION VALVE (1.00 a) GLOBE-TYPE		
	5.8 2.1	;	1 1 2	77v 77v 78 79	SILICA-GEL SHUT OFF VALVE (1.00 a) GLOBL-TYPE LTC CONSERVATOR TANK SUPPORT TETHER POLE MOUNTING PLATE		
			2	/9	VALVES FOR INSTALLATION OF A RELMAN MINITRANS DGA MUNITOR (BALL TIPE)		
Ľ							1
					(769)	(760)	E
						1_70	
			ŧ	4		n n n	
						i))	
							\vdash
						र	
		•	E.	14			
		۔ علی				J	F
	∦⊉	ð	Ħ	Ĩ		\sum	'
	1	1				(69)	
Y		Ð	đ				
		Τ	E	-			
			IH				
		h	╢				
	┍╶╕╇	ľ			┉╪╍┉╪╍┉╪╍┉╪╍┉╞╍┉		
							G
	I	Į					
	_				7142 (SHIPPING LENGTH)		
	- -			C.	THIS DRAWING CONTAINS PROPRIETARY INFORMATION		1
리역	ιC	J	L	15	WHICH CAN NOT BE REPRODUCED WHICH CAN NOT BE REPRODUCED WITHOUT PERMISSION OF PROLEC GE, SCALE:	¥ 7	Н
ROLEC	GE	F	N(GIN		SIONS: IN	1''
tp://ww					REVISIO		ដ
ile: TRA	NS	F	0	RI	01 /18 /2013	NG NO.: 99201D801	LES MOL
			_		01/18/2013	sheet: 1 of 1	Ň-
8					9	10	

APPENDIX F COORDINATES OF TURBINES

Coordinates of the proposed 38 turbine positions are shown below, though only 37 will be installed in the Adelaide Wind Farm. Coordinates are listed in UTM17-NAD83 projection:

Turbine ID	Easting [m]	Northing [m]
1	441963	4763345
2	441755	4762865
3	442142	4762857
4	442529	4762899
5	444245	4762845
6	445590	4763450
7	445620	4763125
8	445087	4762836
9	445586	4762665
10	445939	4762651
11	446370	4762704
12	446360	4762314
13	437290	4759864
14	437710	4759955
15	438055	4759832
16	438483	4759952
17	438837	4759917
18	439187	4759817
19	438176	4759414
20	438783	4759497
21	439875	4759939
22	440261	4759935
23	440623	4759864
24	442013	4759608
25	442404	4759661
26	444694	4759496
27	445175	4759905
28	445687	4759898
29	446031	4759766
30	438092	4757738
31	438237	4758255
32	438593	4758143
33	440506	4757566
34	440812	4757764
35	441115	4757631
36	441641	4757570
37	442072	4757631
38	444335	4758200
Substation	439495	4765334

Coordinates of turbines used to simulate the Napier Wind Farm Noise Emissions are listed below in UTM17-NAD83 projection, as per the Napier NIA [4]:

Turbine ID	Easting [m]	Northing [m]
N1	440074	4756817
N2	441437	4756769

Adelaide Wind Energy Centre – Substation Spare Transformer Noise Assessment

Appendix C

Appendix C: Spare Transformer Noise Emissions

PROLEC

POWER TRANSFORMERS

TEST REPORT

PAGE 19

Serial No:G2994-02

Date :03/07/2015

TEST DEPARTMENT

Purchaser : GENERAL ELECTRIC CANADA Rating : 102.000/136.000/170.000 MVA

AUDIBLE SOUND LEVEL MEASUREMENTS (dB)

RATING : ONAN

H.V. TAP POSITION : NOM L. V. TAP POSITION : NOM

1. Before test meas.					
Side Ambient					
Α	65.2				
В	66.0				
С	65.7				
D	66.4				

3 After test meas.					
Side	Ambient				
Α	65.1				
В	65.4				
С	64.2				
D	64.6				

	2 Ambient + Tr	ansformer meas.	5 Corrected Tr	ansformer meas.
Pos.	1/3 Height	2/3 Height	1/3 Height	2/3 Height
1	69.2	69.4	67.6	67.8
2	68.3	68.6	66.7	67.0
3	69.4	69.7	67.8	68.1
4	68.6	68.6	67.0	67.0
5	69.4	70.1	67.8	68.5
6	69.2	69.4	67.6	67.8
7	68.1	68.3	66.5	66.7
8	68.6	69.2	67.0	67.6
9	68.9	69.1	67.3	67.5
10	69.7	69.1	68.1	67.5
11	70.1	69.9	68.5	68.3
12	69.2	70.1	67.6	68.5
13	69.1	70.0	67.5	68.4
14	70.2	69.4	68.6	67.8
15	70.1	70.2	68.5	68.6
16	69.4	69.2	67.8	67.6
17	69.3	68.3	67.7	66.7
18	70.1	69.4	68.5	67.8
19	69.4	70.1	67.8	68.5
20	69.2	70.2	67.6	68.6
21	68.7	69.4	67.1	67.8

TEST VOLTAGE : 34500 V

4 Average Ambient	
65.0	
6 Average Corrected	i

Guaranteed Level <u>72</u>dB

Average transformer sound pressure level at ANSI surface (Lp) 68.0 db(A)

 Height of the Transformer tank (H)
 4.0
 m

 Length of the prescribed contour (Pm)
 28.5
 m

 Measurement Surface Area (S)
 143
 m

 Sound Power Level (Lw)
 90.0
 db(A)

Results : Accepted

COMMENTS :

Engineer

ngineer

This report can not be reproduced neither partially or totally without previous consent from the Test Department

POWER TRANSFORMERS

TEST REPORT

TEST DEPARTMENT

PAGE 20

Serial No:G2994-02

Date :03/07/2015

Purchaser : GENERAL ELECTRIC CANADA Rating : 102.000/136.000/170.000 MVA

AUDIBLE SOUND LEVEL MEASUREMENTS (dB)

RATING : ONAN

H.V. TAP POSITION : NOM L. V. TAP POSITION : NOM

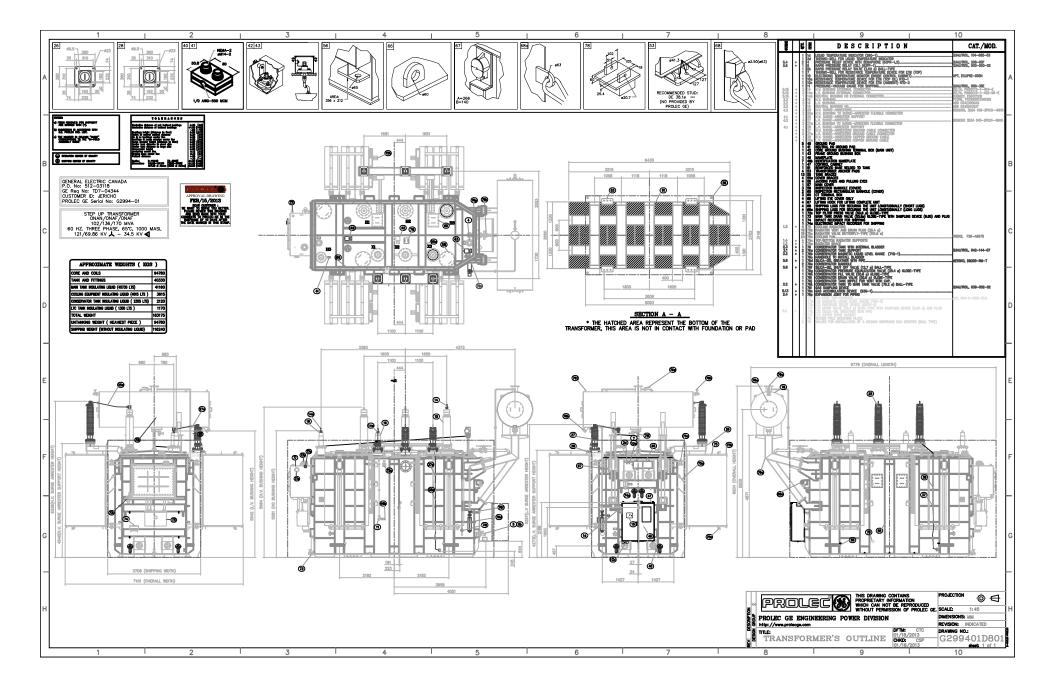
1. Before test meas.				
Side	Ambient			
Α	65.2			
В	66.0			
С	65.7			
D	66.4			

3 After test meas.			
Side	Ambient		
Α	65.1		
В	65.4		
C	64.2		
D	64.6		

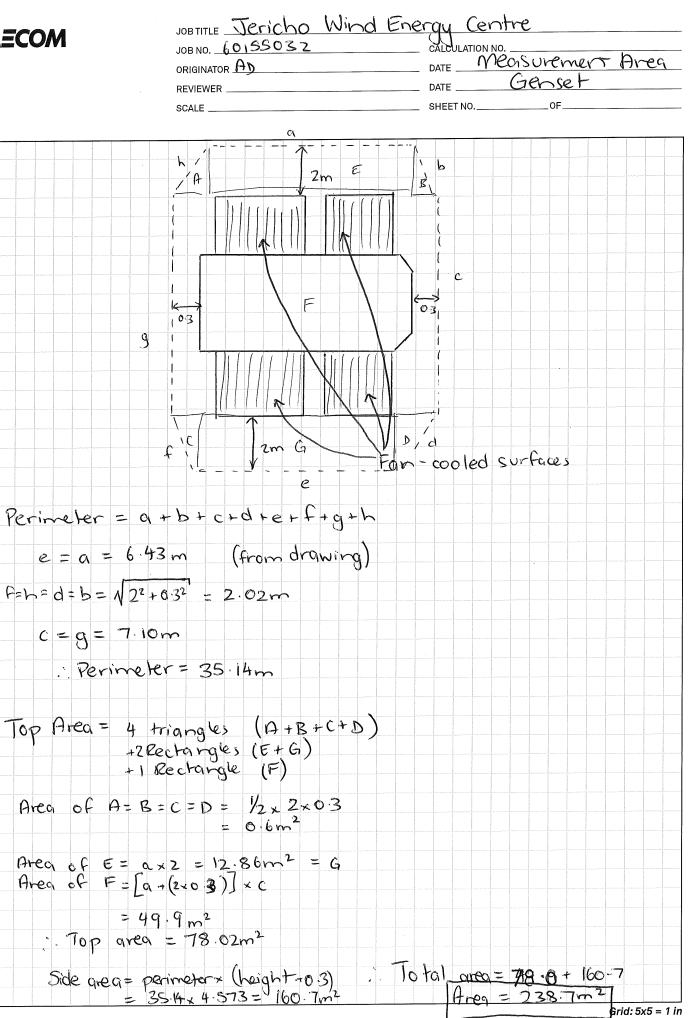
	2 Ambient + Tra	ansformer meas.	5 Corrected Transformer meas			
Pos.	1/3 Height	2/3 Height	1/3 Height	2/3 Height		
22	68.6	69.1	67.0	67.5		
23	70.1	68.1	68.5	66.5		
24	69.4	69.2	67.8	67.6		
25	70.2	70.2 69.3 68.6		67.7		
26	69.3	70.1	67.7	68.5		
27	69.9	69.2	68.3	67.6		
28	70.0	69.4	68.4	67.8		
29	70.1	69.2	68.5	67.6		

TEST VOLTAGE : 34500 V

4 Average Ambient	
65.0	
6 Average Correcte	d i


Guaranteed Level 72 dB Average transformer sound pressure level at ANSI surface (Lp) 68.0 db(A) Height of the Transformer tank (H) 4.0 m Length of the prescribed contour (Pm) 28.5 m Measurement Surface Area (S) 143 m Sound Power Level (Lw) 90.0 db(A) **Results :** Accepted

haineer E


This report can not be reproduced neither partially or totally without previous consent from the Test Department

est Engineer

COMMENTS :

AECOM

Transformer Noise Emission	IS	г								
					Noise F	missin	n Spectr	um		
Noise Rating	72.0					.1115510	n Speen	um		
Measurement Dist	0.30	m	110.0							
Measurement Surface Area	238.7	m^2	କୁ 100.0				-			
Sound Power Level	95.78		(dE							
Tonal Penalty	5.0		0.09 alty							
Sound Power Level	100.8		ы. Бен В.0							=
			+ 4							
			3 70.0							
			60.0		1		1	1	1	
				31.5	63 125	5 250	500 1000	2000	4000	8000
						Frec	quency (Hz)			-
		<u>l</u>								
Octave Band Emission Estimates										
	0 1	. 2	_		Tonal	Lw +	LwA +			
Centre Frequency	Corr ¹	Ncor ²	Lw	LwA	Penalty	Penalty	Penalty			
31.5	-1.0	-2.37	92.4	53.0	5.0	97.4	58.0			
63	5.0	-2.37	98.4	72.2	5.0	103.4	77.2			
125	7.0	-2.37	100.4	84.3	5.0	105.4	89.3			
250	2.0	-2.37	95.4	86.8	5.0	100.4	91.8			
500	2.0	-2.37	95.4	92.2	5.0	100.4	97.2			
1000	-4.0	-2.37	89.4	89.4	5.0	94.4	94.4			
2000	-9.0	-2.37	84.4	85.6	5.0	89.4	90.6			
4000	-14.0	-2.37	79.4	80.4	5.0	84.4	85.4			
8000	-21.0	-2.37	72.4	71.3	5.0	77.4	76.3			
0			104.4	05.70		100.4	100.0			
UV	erall Sound P	ower Level	104.4	95.78		109.4	100.8			
1. Correction from "Engineering Nois	se Control", [David A. Bies	and Colin F	I. Hansen						
2. Normalization correction to ensur					es not excee	d measured	d overall valu	е		